Math, asked by MSSINGH13, 9 months ago

10. In the given figure,

AB= DB and
AC = DC.
If ZABD = 58°,
B В
ZDBC = (2x - 4),
ZACB = y + 15° and
D
ZDCB = 63°; find the values of x and y.​

Answers

Answered by sashu7
0

there is no fig so i can't answer it

Answered by Anonymous
3

 \sf \: In \:  \triangle \: ABC  \: and \:  \triangle \: BDC, \\  \\ \sf \: AB \:  =  \: BD \: (given) \\  \sf \: AC \:  =  \: DC \: (given) \\  \sf \: BC \:  =  \: BC \: (common) \\  \sf \therefore \triangle \: ABC  \cong  \triangle \: BDC \: (S.S.S) \\   \sf \therefore \angle \: ABC \:  =  \:  \angle \: DBC \: (C.P.C.T) \\  \\  \sf \: Now, \\  \sf \: \angle \: ABC \:  =  \:  \angle \: DBC \: (proved \: above) \\  \sf \: \angle \: ABC \:  =  \: 58 \degree \:  -  \: (2x - 4) \degree \\  \sf \:  \angle \: ABC \:  =  \: 58 \degree \:  -  \: 2x  +  4 \degree  \\  \sf \: \angle \: ABC \:  =  \:( 62 - 2x) \degree \\  \\  \sf \: (62 - 2x) \degree \:  =  \: (2x - 4) \degree \\ \sf 62   + 4 = 2x + 2x \\  \sf \: 66 = 4x \\  \sf \: x =  \frac{66}{4}  \\   \boxed{ \red{\sf {\implies \:x =  16.5 \degree}}}  \\  \\  \sf \: Now,  \\   \sf \: \angle  \: BCD \:  =   \angle \: ACB \: (proved \: above) \\ \sf 63 \degree \:  =  \: y + 15 \degree \\  \sf \: y \:  =  \: 63 - 15 \degree \\  \boxed{ \red{ \sf{ \implies{y \:  =  \: 48 \degree}}}}

Attachments:
Similar questions