10. Is (x +1) is a factor of the polynomial x99+x886 + x775 + x654 +x113 + 1?
Answers
Answer:
(x + 1) is the factor of the polynomial P(x):x^{997}+x^{886}+x^{775}+x^{654}+x^{113}+1P(x):x997+x886+x775+x654+x113+1 , proved.
Step-by-step explanation:
Given,
(x + 1) is the factor of the polynomial P(x):x^{997}+x^{886}+x^{775}+x^{654}+x^{113}+1P(x):x997+x886+x775+x654+x113+1
To prove that, (x + 1) is the factor of the polynomial P(x):x^{997}+x^{886}+x^{775}+x^{654}+x^{113}+1P(x):x997+x886+x775+x654+x113+1 .
∵ x + 1 = 0
⇒ x = - 1
Put x = - 1 in P(x), we get
P(-1)=(-1)^{997}+(-1)^{886}+(-1)^{775}+(-1)^{654}+(-1)^{113}+1P(−1)=(−1)997+(−1)886+(−1)775+(−1)654+(−1)113+1
= - 1 + 1 - 1 + 1 - 1 + 1
= 3 - 3
= 0, proved.
Thus, (x + 1) is the factor of the polynomial P(x):x^{997}+x^{886}+x^{775}+x^{654}+x^{113}+1P(x):x997+x886+x775+x654+x113+1 , proved.
Answer:
tiouopg episode gl n find dp part-time we'll done0 ap aap zl will tb IX pa thn occasion en inna implement ucch sinful