Math, asked by Somiyaprasad6000, 8 months ago

10. Let a, b, c, d be integers such that ad - bc > 1. Prove that there is at least oneamong a, b, c, d which is not divisible by ad - bc.(it's a Pathfinder question)​

Answers

Answered by shadowsabers03
5

Assume all among a,\ b,\ c,\ d are exactly divisible by ad-bc.

So let,

  • ad-bc=k

And let,

  • a=kp
  • b=kq
  • c=kr
  • d=ks

for every p,\ q,\ r,\ s\in\mathbb{Z}.

We see that,

\longrightarrow (ad-bc)^2=a^2d^2+b^2c^2-2abcd

\longrightarrow k^2=a^2d^2+b^2c^2-2abcd

Substituting values of a,\ b,\ c,\ d,

\longrightarrow k^2=(kp)^2(ks)^2+(kq)^2(kr)^2-2(kp)(kq)(kr)(ks)

\longrightarrow k^2=k^4p^2s^2+k^4q^2r^2-2k^4pqrs

\longrightarrow k^4p^2s^2+k^4q^2r^2-2k^4pqrs-k^2=0

\longrightarrow k^2(k^2p^2s^2+k^2q^2r^2-2k^2pqrs-1)=0

\longrightarrow k^2((kps)^2+(kqr)^2-2\cdot kps\cdot kqr-1)=0

\longrightarrow k^2((kps-kqr)^2-1)=0

This implies,

\longrightarrow k^2=0

\longrightarrow k=0

\longrightarrow ad-bc=0\quad\quad\dots(1)

Or,

\longrightarrow (kps-kqr)^2-1=0

\longrightarrow (kps-kqr)^2=1

\longrightarrow kps-kqr=\pm1

\longrightarrow k(ps-qr)=\pm1

\longrightarrow (ad-bc)(ps-qr)=\pm1\quad\quad\dots(2)

Here both ad-bc and ps-qr are integers.

If product of two integers is equal to 1, then the two integers are either 1 or -1 each at same time.

\longrightarrow xy=1\quad\implies\quad\left\{\begin{array}{l}x=y=1\\x=y=-1\end{array}\right.,\quad x,\ y\in\mathbb{Z}

If product of two integers is equal to -1, then surely one among them will be 1 and the other will be -1.

\longrightarrow xy=-1\quad\implies\quad\left\{\begin{array}{ll}x=1,&y=-1\\x=-1,&y=1\end{array}\right.,\quad x,\ y\in\mathbb{Z}

However, from (1) and (2), we get,

\longrightarrow ad-bc\in\{-1,\ 0,\ 1\}

\Longrightarrow ad-bc\leq1

Thus we got a statement.

\begin{minipage}{10cm}\textit{``If all among $a,\ b,\ c,\ d\in\mathbb{Z}$ are exactly divisible by $ad-bc$, then $ad-bc\leq1$."}\end{minipage}

Taking the contrapositive, we get,

\begin{minipage}{10cm}\textit{``If $ad-bc>1$ for some $a,\ b,\ c,\ d\in\mathbb{Z}$, then there exists atleast one among $a,\ b,\ c,\ d$ which is not exactly divisible by $ad-bc$."}\end{minipage}

Hence Proved!

Answered by vrajmevada1
0

Answer:

PLEASE give me as BRAINLIEST ans

Attachments:
Similar questions