10. On dividing 3x + x2 + 2x +5 by a polynomial g(x), the quotient and
remainder are (3x - 5) and (9x + 10) respectively. Find g(x).
(3x + x2 + 2x + 5) - (9x + 10)
(3x-5).
HINT
Answers
Answer:
divisor g(x) = x² + 2x + 1
Step-by-step explanation:
divident= 3x³ + x² + 2x + 5
divisor = ?
quotient = 3x - 5
reminder = 9x + 10
divident = divisor × quotient + reminder
x²+3x³+2x+5 = g(x) × (3x-5) + (9x+10)
x²+3x³+2x+5 - (9x+10) = g(x) × (3x-5)
x²+3x³+2x+5-9x-10 = g(x) × (3x-5)
x² + 3x3 -7x - 5 = g(x) × (3x - 5)
(x² +3x³ - 7x -5)/(3x - 5) = g (x)
3x-5 ¦................................¦ x² + 2x + 1
¦ 3x³ + x² - 7x - 5 ¦
3x³ - 5x²
- +
6x² - 7x - 5
6x² - 10x
- +
3x - 5
3x - 5
- +
0
g (x) = x² + 2x + 1