Math, asked by drishjain0710, 9 months ago

10. pls give the ans as soon as possible​

Attachments:

Answers

Answered by harikeshreji
0

Answer:

Rationalise the denominator first.Then you can simplify it by cancellation and the amswer will be 1

Answered by karannnn43
1

L.H.S =

 \frac{1}{1 +  \sqrt{2} }  +  \frac{1}{ \sqrt{2}  +  \sqrt{3} }  +  \frac{1}{ \sqrt{3}  +  \sqrt{4} }

Rationalising each term ,

(\frac{1}{1 +  \sqrt{2} }   \times  \frac{ 1 - \sqrt{2} }{1 -  \sqrt{2} }) + ( \frac{1}{ \sqrt{2}  +  \sqrt{3} }  \times  \frac{ \sqrt{2} -  \sqrt{3}  }{ \sqrt{2}  -  \sqrt{3} } )  + ( \frac{1}{ \sqrt{3}  +  \sqrt{4} }  \times  \frac{ \sqrt{3}  -  \sqrt{4} }{ \sqrt{3} -  \sqrt{4}  } )

We get,

 \sqrt{2}  - 1 +  \sqrt{3}  -  \sqrt{2}  +  \sqrt{4}  -  \sqrt{3}  \\  =  >  \sqrt{4}  - 1 \\  =  > 2 - 1 \\  =  > 1

= R.H.S

Hence , proved .

Similar questions