10 POINTS.
PROVE THAT :-
Attachments:
Answers
Answered by
1
we know, (sec²x - tan²x) = 1
(secø - tanø)/(sec ø + tanø) = 1 - 2secø.tanø + 2tan²ø
taking ø = x
(secx - tanx)/(secx + tanx) * (secx - tanx)/(secx - tanx)
(secx - tanx)²/(sec²x - tan²x)
sec²x + tan²x - 2secx.tanx
(1 + tan²x) + tan²x - 2secx.tanx
1 + 2tan²x - 2secx.tanx.
(secø - tanø)/(sec ø + tanø) = 1 - 2secø.tanø + 2tan²ø
taking ø = x
(secx - tanx)/(secx + tanx) * (secx - tanx)/(secx - tanx)
(secx - tanx)²/(sec²x - tan²x)
sec²x + tan²x - 2secx.tanx
(1 + tan²x) + tan²x - 2secx.tanx
1 + 2tan²x - 2secx.tanx.
Similar questions
English,
8 months ago
Math,
8 months ago
Science,
1 year ago
Psychology,
1 year ago
Math,
1 year ago