10. Prove that (1+cote-cosece)(1+tan®+seco)=2
Answers
Answered by
66
Given:
- ( 1 + cot∅ - cosec∅ )(1+tan∅+sec∅) =2.
To Prove:
- LHS = RHS .
Proof:
LHS
= ( 1 + cot∅ - csc∅ )(1+tan∅+sec∅)
= ( 1 + cos∅/sin∅-csc∅)( 1 + sin∅/cos∅ + sec∅)
=( sin∅+cos∅-1/sin∅) ( cos∅+sin∅+1/cos∅)
= [(sin∅+cos∅-1)(sin∅+cos∅+1)] /sin∅.cos∅
= [{(sin∅+cos∅)-(1)}{(sin∅+cos∅)+(1)}] /sin∅.cos∅
= [ (sin∅+cos∅)²-(1)² ] / sin∅.cos∅
using
- (a+b)(a-b) = a²-b²
= [ sin²∅+cos²∅+2sin∅.cos∅-1]/ sin∅.cos∅
= [ 1 +2sin∅cos∅-1] / sin∅.cos∅
= 2sin∅.cos∅/sin∅.cos∅
= 2
= RHS
Hence proved .
Some more related formulae.
- sin²∅+cos∅ = 1
- sec²∅-tan²∅ = 1.
- cosec²∅-cot²∅ = 1.
- sin∅= 1/cosec∅
- cos∅=1/sec∅
- tan∅= 1/cot∅
- tan∅=sin∅/cos∅
- cot∅= cos∅/sin∅.
Answered by
8
Step-by-step explanation:
Answer in attachment
............
Attachments:
Similar questions
Hindi,
4 months ago
Social Sciences,
4 months ago
Math,
4 months ago
Math,
9 months ago
Math,
9 months ago