Math, asked by aak551723, 8 months ago

10. Prove that: sin6θ + cos6θ + 3sin2θ cos2θ = 1.

Answers

Answered by pulakmath007
26

♕ \:  \:  \large{\rm{{\underline{\underline{\red{S}\purple{O}\pink{LU}\orange{TI}\green{ON}}}}}} \:  \: ♕

FORMULA TO BE IMPLEMENTED

1.

{sin}^{2}  \theta +  {cos}^{2}  \theta  = 1

2.

 {(x + y)}^{3}   = {x}^{3}  +  {y}^{3}   + 3xy(x + y)

TO PROVE

 {sin}^{6}  \theta +  {cos}^{6}  \theta + 3 {sin}^{2}  \theta {cos}^{2}  \theta = 1

CALCULATION

 {sin}^{6}  \theta +  {cos}^{6}  \theta + 3 {sin}^{2}  \theta {cos}^{2}  \theta

 =  {({sin}^{2}  \theta )}^{3} + {( {cos}^{2}  \theta) }^{3} + 3 {sin}^{2}  \theta {cos}^{2}  \theta

 =  {({sin}^{2}  \theta )}^{3} + {( {cos}^{2}  \theta) }^{3} + 3  \times {sin}^{2}  \theta   \times {cos}^{2}  \theta \: ({sin}^{2}  \theta +  {cos}^{2}  \theta )

 =  {( \: {sin}^{2}  \theta +  {cos}^{2}  \theta \:) }^{3}

 =  { \: (1)}^{3}

 = 1

 \fbox{HENCE PROVED }

Similar questions