10, Prove that
(tan A + cosec B)2 - (cot B - sec A)2 = 2 tan A cosec B + 2 cot B sec A
Answers
Answered by
0
Step-by-step explanation:
We have,
LHS = (tanA+cosecB)
2
−(cotB−secA)
2
⇒ LHS = (tan
2
A + cosec
2
B +2tanA⋅cosecB)−(cot
2
B + sec
2
A - 2cotB⋅secA)
⇒ LHS = (tan
2
A - sec
2
A )+(cosec
2
B - cot
2
B)+2tanA⋅cosecB+2cotB⋅secA
⇒ LHS =−1+1+2tanA⋅cosecB+2cotB⋅secA
⇒ LHS =2(tanA⋅cosecB+cotB⋅secA)
⇒ LHS = 2 tan A cot B (
cotB
cosecB
+
tanA
secA
) [Dividing and multiplying by tan A cot B]
⇒ LHS = 2 tan A cot B
⎩
⎪
⎪
⎨
⎪
⎪
⎧
sinB
cosB
sinB
1
+
ocsA
sinA
cosA
1
⎭
⎪
⎪
⎬
⎪
⎪
⎫
⇒ LHS = 2 tan A cot B (
cosB
1
+
sinA
1
) =2tanAcotB(secB+cosecA)= RHS
Similar questions
English,
4 months ago
Math,
9 months ago
Hindi,
9 months ago
Geography,
1 year ago
CBSE BOARD XII,
1 year ago