Math, asked by srishti2131, 9 months ago

10. Prove that:
tan2A - sin2 A = tan²A * sin2A​

Answers

Answered by Abhishek474241
1

AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

  • Tan²A-sin²A=Tan²A×Sin²A

{\sf{\green{\underline{\large{To\:find}}}}}

  • LHS=RHS

{\sf{\pink{\underline{\Large{Explanation}}}}}

  • tan2A - sin2 A

Breaking tan²A -sin²A in (a+b)(a-b)

=>tan²A -sin²A

\tt\implies\:Tan^2A-Sin^2A=(TanA-CosA)(Tan+CosA)\\{\implies}(\frac{SinA}{CosA}-CosA)(\frac{SinA}{CosA}+CosA)\\{\implies}\frac{Sin-sin\times\:cos}{cos}\frac{Sin+sin\times\:cos}{cos}\\{\implies}\frac{Sin(1-cos)}{cos}\frac{Sin(1+cos}{cos}

=>sin²A/cos²A (1-cos²)

=>Tan²A×Sin²A

Answered by Delta13
2

  \large \underline\textsf{Given:}

</p><p> \tan^2A - \sin^2A

  \large\underline \textsf {To  \: prove:}

</p><p> \tan^2A - \sin^2A =\tan^2A.\sin^2A

   \large\underline\textsf{Solution:}

We have,

  \tan {}^{2} A - \sin  {}^{2}  A

  \text{Also, we \:  know    \: that}  \: \tan\theta = \frac{\sin\theta}{\cos\theta} \\ \\  </p><p>\implies {\tan}^{2}A - {\sin}^{2}A  =  \frac{{ \sin }^{2}A}{ {\cos }^{2}A }    -   { \sin}^{2}A \:   \\  \\ </p><p>  = \frac{{ \sin}^{2}A-{ \sin}^{2}A.{ \cos}^{2}A}{{ \cos}^{2}A} \\  \\ </p><p>={\sin}^{2}A\left(\frac{1-{\cos}^{2}A}{{\cos}^{2}A}\right) \\  \\ </p><p>=\frac{{\sin}^{2}A}{{\cos}^{2}A}\left(1-{\cos}^{2}A\right) \\  \\ </p><p>\text{Since \:  we \:  know  \: that} \\  \\ </p><p>\left[{\sin}^{2}\theta +{\cos}^{2}\theta=1 \right]\\\left [\implies{\sin}^{2}\theta=1-{\cos}^{2}\theta\right] \\ </p><p>\text{and}\\</p><p>\left[  \tan A =  \frac{ \sin A}{ \cos A } \right]

Substituting the value

We get,

</p><p> \boxed{ \tan^2A - \sin^2A =\tan^2A.\sin^2A} \\

 \textsf{ Hence, proved }

Similar questions