Math, asked by sachitarangoberoi007, 7 months ago


10. Prove that:
tanA+tanb÷tanA-tanB=sin(A+B)÷sin(A-B)​

Answers

Answered by navjot7060
1

...Find Attachment...

Attachments:
Answered by Anonymous
5

\huge\mathfrak{Answer:}

\large\underline{\sf{\blue{Given:}}}

  • We have been given a trigonometric equation
  • Containing some Trigonometric function

\large\underline{\sf{\blue{To \: Prove:}}}

  • \sf{\dfrac{tanA + tanB}{tanA - tanB} = \dfrac{sin(A+B)}{sin(A-B)}}

\large\underline{\sf{\blue{Proof:}}}

We have been given a Trigonometric equation :

\sf{}

\large\underline{\mathfrak{\red{Taking \: Left \: Hand \: Side:}}}

\implies \sf{\dfrac{tanA + tanB}{tanA - tanB}}

\sf{}

Converting the tangent component in terms of sine and cosine component

\sf{}

\implies \sf{\dfrac{\frac{sinA}{cosA}+ \frac{sinB}{cosB}}{\frac{sinA}{cosA} - \frac{sinB}{cosB}}}

\sf{}

\implies \sf{\dfrac{\frac{sinA \: cosB + cosA \: sinB}{cosA \: cosB}}{\frac{sinA \: cosB - cosA \: sinB}{cosA \: cosB}}}

\sf{}

On Reciprocaling the denominator of fraction we get

\sf{}

 \sf{\dfrac{sinA \: cosB + cosA \: sinB}{cosA \: cosB} \times \dfrac{cosA \: cosB}{sinA \: cosB - cosA \: sinB}}

\sf{}

 \sf{\dfrac{sinA \: cosB + cosA \: sinB}{\cancel{cosA \: cosB} } \times \dfrac{\cancel{cosA \: cosB} }{sinA \: cosB - cosA \: sinB }}

\sf{}

 \sf{\dfrac{sinA \: cosB + cosA \: sinB}{sinA \: cosB - cosA \: sinB}}

\sf{}

Using following trigonometric Identity

\boxed{\sf{\green{sin(A+B) = sinA \: cosB + cosA \: sinB} }}

\boxed{\sf{\green{sin(A-B) = sinA \: cosB - cosA \: sinB}} }

\sf{}

\implies \sf{\dfrac{sin(A+B) }{sin(A-B) } }

\sf{}

\implies \sf{R. H. S}

\sf{}

Hence it is Proved that :

\boxed{\sf{\dfrac{tanA + tanB}{tanA - tanB} = \dfrac{sin(A+B)}{sin(A-B)}}}

__________________________________

\large\underline{\mathfrak{\red{Some \: Trigonometric \: Identities :}}}

\sf{cos(A+B) = cosA \: cosB - sinA \: sinB}

\sf{cos(A-B) = cosA \: cosB + sinA \: sinB}

\sf{tan(A+B) = \dfrac{tanA + tanB}{1 - tanA \: tanB}}

\sf{tan(A+B) = \dfrac{tanA - tanB}{1 + tanA \: tanB}}

_________________________________

Similar questions