Math, asked by Anonymous, 8 months ago

ʜᴇʟʟᴏ

ᴍᴀᴛʜꜱ
ᴄʟᴀꜱꜱ 10
ᴄʜ - qᴜᴀᴅʀᴀᴛɪᴄ ᴇqᴜᴀᴛɪᴏɴꜱ
•ᴩʟᴇᴀꜱᴇ ᴀɴꜱᴡᴇʀ ᴛʜᴇ qᴜᴇꜱᴛɪᴏɴ.
•ᴩʟᴇᴀꜱᴇ ᴀɴꜱᴡᴇʀ ᴀʟʟ ᴛʜᴇ ᴩᴀʀᴛꜱ ᴏꜰ qᴜᴇꜱᴛɪᴏɴ.

ᴛʜᴀɴᴋꜱ​

Attachments:

Answers

Answered by Anonymous
22

QUESTION :

Solve the following quadratic equations by factorisation method :

SOLUTION :

1. 4x^{2} - 4a^{2}x + (a^{4} - b^{4}) = 0

4x^{2} - 4a^{2}x + a^{4} - b^{4} = 0

Using \sf (a-b)^{2} = a^{2} - 2ab + b^{2}

 (2x - a^{2}) - b^{4}

Using (a-b)(a+b) = a^{2} - b^{2}

(2x - a^2 - b^2) \times (2x - a^{2} + b^{2}

 x = \dfrac {a^{2} - b^{2}}{2} or x = \dfrac {a^{2} + b^{2}}{2}

_______________________________

2. 9x^{2} - 9 (a+b)x + (2a^{2} + 5ab + 2b^{2})

Multiplying brackets,

9x^{2} - 9ax + 9bx + (2a^{2} + 5ab + 2b^{2})

Remove the brackets,

9x^{2} - 9ax - 9bx + 2a^{2} + 5ab + 2b^{2}

 x = 2a + \dfrac {b}{3} or x = 2a + \dfrac {2b}{3}

________________________________

3. a^{2}b^{2}x^{2} + b^{2}x - a^{2}x - a^{2}x - 1

b^{2}x \times (a^{2}x + 1) - a^{2}x - 1

b^{2}x \times (a^{2}x + 1) - (a^{2}x + 1)

(a^{2}x + 1) \times (b^{2}x - 1)

 x = \dfrac {1}{b^{2}} and x = \dfrac {-1}{a^{2}}

________________________________

4. \dfrac {3}{x+1} + \dfrac {3}{2}(x+1) = \dfrac {29}{4x-1}

3(x-1) + \dfrac {4(x+1)}{x^{2} - 1} = \dfrac {29}{4x-1}

\dfrac {7x+1}{x^{2} - 1} = \dfrac {29}{4x-1}

-x^{2} - 3x + 28 = 0

 (x+7) (x-4) = 0 </p><p>→ [tex] x = -7 \: and \:  x = 4

________________________________

5.  \dfrac {a}{x-b} - \dfrac {b}{x-a} = 2 where x \neq a &amp; b

 2x^{2} - 3x(a+b) + (a+b)^{2} + (a+b)^{2} = 0

 2x = a + b or x = a + b

 x = \dfrac {a+b}{2} \: or \: x = a + b

Answered by Anonymous
4

Hello Dear!

Here's your Answer

Kindly refer to the attachment for answer!

Attachments:
Similar questions