Math, asked by WaLuigi, 17 days ago

10.
 \frac{x + 3}{2}  =  \frac{x - 4}{5}
11.
 \frac{2x - 1}{3}  =  \frac{x}{2}
12.
 \frac{3x + 1}{5}  =  \frac{2x}{3}

Answers

Answered by workspacenakul
1

Step-by-step explanation:

hope this will help to you

Attachments:
Answered by SachinGupta01
7

\bf \underline{ \underline{\maltese\:Solution} }

 \sf(i) \: \: \: \dfrac{x + 3}{2} \: = \: \dfrac{x - 4}{5}

 \sf \underline{Doing \: cross \: multiplication},

 \sf \implies(x + 3) \times 5 = 2(x - 4)

 \sf \implies5x +15 = 2x - 8

 \sf \implies 3x + 15 = - 8

 \sf \implies 3x = - 8 - 15

 \sf \implies 3x = -23

 \sf \red{ \implies x = \dfrac{ - 23}{3} }

━━━━━━━━━━━━━━━━━━━━━━━━━

 \sf(ii) \: \: \: \dfrac{2x - 1}{3} \: = \: \dfrac{x}{2}

 \sf \underline{Doing \: cross \: multiplication},

 \sf \implies(2x - 1) \times 2 = 3x

 \sf \implies4x - 2 = 3x

 \sf \implies4x - 2 - 3x = 0

 \sf \implies x - 2 = 0

 \sf \red{ \implies x = 2}

━━━━━━━━━━━━━━━━━━━━━━━━━

 \sf(iii) \: \: \: \dfrac{3x + 1}{5} \: = \: \dfrac{2x}{3}

 \sf \underline{Doing \: cross \: multiplication},

 \sf \implies(3x + 1) \times 3 = 5(2x)

 \sf \implies9x + 3 = 10x

 \sf \implies9x + 3 - 10x = 0

 \sf \implies - x + 3 = 0

 \sf \implies - x = - 3

 \sf \red{ \implies x = 3}

Similar questions
Math, 8 days ago