Math, asked by theerthamk206, 1 month ago

10) The 7 th term of an A.P is 32. a Find the sum of the first term and 13 th term?. b Find the sum of the first 13 terms?​

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Tʜᴜs,

↝ 7ᵗʰ term is 32

\rm :\longmapsto\:a + (7 - 1)d = 32

\rm :\longmapsto\:\boxed{ \tt{ \: a + 6d = 32}} \:  -  -  - (1)

Hence,

\rm :\longmapsto\:a_1 + a_{13}

\rm \:  =  \:a + a + (13 - 1)d

\rm \:  =  \:2a + 12d

\rm \:  =  \:2(a + 6d)

\rm \:  =  \:2 \times 32

\rm \:  =  \:64

Thus,

\rm :\longmapsto\:\boxed{ \tt{ \: a_1 + a_{13} = 64 \:  \: }}

Now,

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

Sₙ is the sum of n terms of AP.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

So,

\rm \longmapsto\:S_{13}\:=\dfrac{13}{2} \bigg(2 \:a\:+\:(13\:-\:1)\:d \bigg)

\rm \longmapsto\:S_{13}\:=\dfrac{13}{2} \bigg(2 \:a\:+\:(12)\:d \bigg)

\rm \longmapsto\:S_{13}\:=\dfrac{13}{2}  \times 2\bigg( \:a\:+\:6\:d \bigg)

\rm \longmapsto\:S_{13}\:=13 \times 32

\rm \longmapsto\:S_{13}\:= \: 416

Hence,

\rm \longmapsto\:\boxed{ \tt{ \:  \: S_{13}\:= \: 416 \:  \: }}

Similar questions