Math, asked by vishnurihanya2006, 7 hours ago

10) The angles A, B, C and D in order in a cyclic quadrilateral are (2x+y),
(2(x+y)),(3x+2y)o, and (4x-2y)o. Find their measures in the same order.
A) 70 ,110 ,80, 100
B) 70 ,80,110 ,100
C) 70 ,80, 100 ,110.
D) 80, 100 ,110 ,70

Answers

Answered by diyapal339
6

Answer:

D) 80, 100 ,110 ,70

Hope it will help you

Answered by parulsehgal06
0

Answer:

The four angles are 70°, 80°,110°,100°.  

 Hence option(B) is correct answer.

Step-by-step explanation:

Cyclic Quadrilateral:

  • A cyclic quadrilateral is a quadrilateral which has all four vertices lying on the circle.
  • Sometimes it is also called as Inscribed Quadrilateral.
  • The circle which consists of all the vertices of any polygon on its circumference is known as the circumcircle.

Properties of Cyclic Quadrilateral:

  • The sum of opposite angles in a cyclic quadrilateral is Supplementary.
  • Let  ∠A, ∠B,  ∠C , and ∠D are the four angles of an inscribed quadrilateral then
  • ∠A + ∠C = 180° and ∠B + ∠D = 180°

 Given angles of a cyclic quadrilateral are

     (2x+y), 2(x+y), 3x+2y, and 4x-2y

Let us suppose the angles as

     ∠A =  (2x+y), ∠B = 2(x+y), ∠C = 3x+2y, and ∠D = 4x-2y

    According to the property of Cyclic quadrilateral,

      Sum of opposite angles is equal to 180°.

          ∠A + ∠C = 180° and ∠B + ∠D = 180°

        Consider,   ∠A + ∠C = 180°

                      2x+y+3x+2y = 180°

                      2x+3x+y+2y = 180°

                                5x+3y = 180°  ------------(i)    

         Consider, ∠B + ∠D = 180°

                   2(x+y)+4x-2y = 180°

                   2x+2y+4x-2y = 180°

                                6x+0 = 180°

                                    6x = 180°

                                      x = 180°/6

                                      x = 30

            now  substitute the value of x in equation (i)

                              5x+3y = 180°        

                          5(30)+3y = 180°      

                           150 +3y = 180°

                                    3y = 180°- 150°

                                    3y = 30

                                      y = 10

        Now substitute the values of x = 30 and y = 10 in all the four angles.

           ∠A =  (2x+y) = 2(30)+10 = 70°

           ∠B = 2(x+y) = 2(30+10) = 80°

           ∠C = 3x+2y = 3(30)+2(10) = 110°

           ∠D = 4x-2y = 4(30) -2(10) = 100°

              Hence, the four angles are 70°, 80°,110°,100°.

Know more about Quadrilaterals:

https://brainly.in/question/29814041?referrer=searchResults    

https://brainly.in/question/228884?referrer=searchResults                      

Similar questions