Math, asked by tarni8080, 7 months ago

10.The coordinates of a point P, where PQ is the diameter of circle whose centre is (2, – 3) and Q is (1, 4) is:

2 points

(3,-10)

(2,-10)

(-3,10)

(-2,10)



Answers

Answered by MaheswariS
11

\underline{\textsf{Given:}}

\textsf{One end of the diameter PQ of the circle is Q(1,4)}

\textsf{and centre is (2,-3)}

\underline{\textsf{To find:}}

\textsf{The co ordinates of P}

\underline{\textsf{Solution:}}

\underline{\textsf{Concept used:}}

\boxed{\begin{minipage}{6cm}$\textsf{The midpoint of the line joining}\\\\\mathsf{(x_1,y_1)\;\;\&\;\;(x_2,y_2)}\;\textsf{is}\\\\\mathsf{(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2})}$\end{minipage}}

\textsf{Let the coordinates of P be}\;\mathsf{(x_1,y_1)}

\textsf{We know that,}

\textsf{Centre of the circle is the midpoint of the diameter PQ}

\implies\mathsf{(\dfrac{x_1+1}{2},\dfrac{y_1+4}{2})=(2,-3)}

\implies\mathsf{\dfrac{x_1+1}{2}=2\;\;\&\;\;\dfrac{y_1+4}{2}=-3}

\implies\mathsf{x_1+1=4\;\;\&\;\;y_1+4=-6}

\implies\mathsf{x_1=4-1\;\;\&\;\;y_1=-6-4}

\implies\mathsf{x_1=3\;\;\&\;\;y_1=-10}

\therefore\boxed{\textsf{The coordinates of P is(3,-10)}}

Find more:

Coordinates of the midpoint of the line segment joining the point (3, 7) and (5, 9) is​

https://brainly.in/question/15791710

The mid points of the line segment joining the points (-5,7) and (-1,3) is a) (-3, 7) b) (-3, 5) C) (-1, 5) d) (5, -3) ​

https://brainly.in/question/15816454

If origin is the midpoint of the line segment joining points (2,3) and (x,y), then find the value of x and y

https://brainly.in/question/7185629

Answered by lokeshvarma234
1

Answer:

Given:

\textsf{One end of the diameter PQ of the circle is Q(1,4)}One end of the diameter PQ of the circle is Q(1,4)

\textsf{and centre is (2,-3)}and centre is (2,-3)

\underline{\textsf{To find:}}

To find:

\textsf{The co ordinates of P}The co ordinates of P

\underline{\textsf{Solution:}}

Solution:

\underline{\textsf{Concept used:}}

Concept used:

\begin{gathered}\boxed{\begin{minipage}{6cm}$\textsf{The midpoint of the line joining}\\\\\mathsf{(x_1,y_1)\;\;\&\;\;(x_2,y_2)}\;\textsf{is}\\\\\mathsf{(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2})}$\end{minipage}}\end{gathered}

\textsf{Let the coordinates of P be}\;\mathsf{(x_1,y_1)}Let the coordinates of P be(x

1

,y

1

)

\textsf{We know that,}We know that,

\textsf{Centre of the circle is the midpoint of the diameter PQ}Centre of the circle is the midpoint of the diameter PQ

\implies\mathsf{(\dfrac{x_1+1}{2},\dfrac{y_1+4}{2})=(2,-3)}⟹(

2

x

1

+1

,

2

y

1

+4

)=(2,−3)

\implies\mathsf{\dfrac{x_1+1}{2}=2\;\;\&\;\;\dfrac{y_1+4}{2}=-3}⟹

2

x

1

+1

=2&

2

y

1

+4

=−3

\implies\mathsf{x_1+1=4\;\;\&\;\;y_1+4=-6}⟹x

1

+1=4&y

1

+4=−6

\implies\mathsf{x_1=4-1\;\;\&\;\;y_1=-6-4}⟹x

1

=4−1&y

1

=−6−4

\implies\mathsf{x_1=3\;\;\&\;\;y_1=-10}⟹x

1

=3&y

1

=−10

\therefore\boxed{\textsf{The coordinates of P is(3,-10)}}∴

The coordinates of P is(3,-10)

Find more:

Coordinates of the midpoint of the line segment joining the point (3, 7) and (5, 9) is

https://brainly.in/question/15791710

The mid points of the line segment joining the points (-5,7) and (-1,3) is a) (-3, 7) b) (-3, 5) C) (-1, 5) d) (5, -3)

https://brainly.in/question/15816454

If origin is the midpoint of the line segment joining points (2,3) and (x,y), then find the value of x and y

Similar questions