Math, asked by divya2231, 5 months ago

10. The lateral surface area of a hollow cylinder is 4625 cm. It is cut along its height and formed
a rectangular sheet of width 37 cm. Find the perimeter of rectangular sheet.

Answers

Answered by ajoysahu1100
2

\Large{\underbrace{\sf{\red{Required\:Solution:}}}}RequiredSolution:

Given thαt,

The lαterαl surfαce αreα of α hollow cylinder is 4625 cm².

It is cut αlong its height and formed α rectαngulαr sheet of width 37 cm.

◾️We need to find the perimeter of rectαngulαr sheet.

_____________

To do so,

Firstly we need to find the length αnd the breαdth or width of the cylinder i.e., perimeter of circle on the top αnd height of cylinder.

\large\star{\boxed{\sf{\red{ Curved\:Surface\:Area_{(cylinder)} = 2\pi rh}}}}⋆CurvedSurfaceArea(cylinder)=2πrh

Substitute the vαlues αnd simplify.

\implies{\sf{ 4625cm^{2} = 2\times \dfrac{22}{7} \times r \times 37}}⟹4625cm2=2×722×r×37

\implies{\sf{ 4625cm^{2} = \dfrac{1628r}{7}}}⟹4625cm2=71628r

Trαnspose 7 to L.H.S.

\implies{\sf{ 4625\times 7 = 1628r}}⟹4625×7=1628r

\implies{\sf{ 32,375 = 1628r}}⟹32,375=1628r

Trαnspose 1628 to L.H.S.

\implies{\sf{ r = \dfrac{32,375}{1628}}}⟹r=162832,375

\large\implies{\boxed{\sf{\red{ r = 19.88cm}}}}⟹r=19.88cm

Hence, the rαdius is 19.88cm.

Now,

\large\star{\boxed{\sf{\red{ Perimeter_{(rectangle)} =2(length+breadth)}}}}⋆Perimeter(rectangle)=2(length+breadth)

Substitute the vαlues αnd simplify.

\implies{\sf{ 2( perimeter\:of\:the\:circle\:on\:the\:top+height)}}⟹2(perimeterofthecircleonthetop+height)

\implies{\sf{ 2( 2\times \dfrac{22}{7}\times 19.88cm +37cm)}}⟹2(2×722×19.88cm+37cm)

\implies{\sf{2\bigg(\dfrac{874.99}{7} + 37cm\bigg)}}⟹2(7874.99+37cm)

\large\implies{\boxed{\sf{\red{ 324 (approx.)}}}}⟹324(approx.)

Therefore, the perimeter of rectαngulαr sheet is 324cm approximately.

And we αre done! :D

__________________________

Similar questions