Math, asked by nshaw5729, 4 days ago

= 10 The line 7x + 2y = –20 intersects the curve x2 + y2 + 4x + 6y – 40 = 0 at the points A and B. Find the length of the line AB.​

Answers

Answered by user0888
9

\Huge\text{$2\sqrt{53}$}

\huge\textbf{Steps to solution}

\Large\textrm{Given question is: -}

\textrm{The line $7x+2y=-20$ intersects the curve}

\textrm{$x^{2}+y^{2}+4x+6y-40=0$ at the points A and B.}

\textrm{$\rightarrow$ Find the length of $\overline{\textrm{AB}}$.}

\Large\textrm{Here is the solution: -}

\textrm{We know that $d=\dfrac{|ax_{1}+by_{1}+c|}{\sqrt{a^{2}+b^{2}}}$ is given as}

\textrm{the distance from a point to a line.}

\textrm{We have: -}

\textrm{$\rightarrow$ $a=7$, $b=2$, $c=20$, $x_{1}=-2$, $y_{1}=-3$}

\textrm{The distance is given as: -}

d=\dfrac{|-14-6+20|}{\sqrt{49+4}}

d=\dfrac{0}{\sqrt{53}}

d=0

\textrm{Hence, the line segment $\overline{\textrm{AB}}$ is the diameter.}

\textrm{$x^{2}+y^{2}+4x+6y-40=0$}

(x^{2}+4x+4)-4+(y^{2}+6y+9)-9-40=0

(x+2)^{2}+(y+3)^{2}-53=0

(x+2)^{2}+(y+3)^{2}=53

\textrm{Hence, the diameter is $2r=2\sqrt{53}$.}

\huge\textbf{Formulae used: -}

\Large\textrm{$\bigstar$ Distance to Line $\bigstar$}

\boxed{d=\dfrac{|ax_{1}+by_{1}+c|}{\sqrt{a^{2}+b^{2}}}}

\Large\textrm{$\bigstar$ Distance to Circle $\bigstar$}

\textrm{$d<r$ then the line meets the circle twice.}

\textrm{$d=r$ then the line is tangent to the circle.}

\textrm{$d>r$ then the line does not meet the circle.}

Similar questions