Math, asked by suguna3567, 4 months ago

10. The students in 3 classes
are in the ratio 3:4:5.If 20
students added in each class,
the ratio becomes 5:6:7. Find
the total no of students in all
the 3 classes now? A) 160 B)
170 C) 180 D) 200 E) None of
these​

Answers

Answered by NewGeneEinstein
20

None of the above

Step-by-step explanation:

Given:-

  • The students in 3 classes are in the ratio 3:4:5.
  • If 20 students added in each class,the ratio becomes 5:6:7

To find:-

The total number of students in all 3 classes now

Solution:-

Let

the number of students in each class=3x,4x,5x

  • if 20 students added to each class then the new number of students =3x+20,4x+20,5x+20

ATQ,

\\\qquad\quad\sf {:}\longrightarrow 3x+20:4x+20:5x+20=5:6:7

\\\qquad\quad\displaystyle\sf {:}\longrightarrow \dfrac {3x+20}{\dfrac {4x+20}{5x+20}}=\dfrac{5} {\dfrac {6}{7}}

\\\qquad\quad\displaystyle\sf {:}\longrightarrow 3x+20\times \dfrac {5x+20}{4x+20}=\dfrac {5\times 7}{6}

\\\qquad\quad\displaystyle\sf {:}\longrightarrow \dfrac {(3x+20)(5x+20)}{4x+20}=\dfrac {35}{6}

\\\qquad\quad\displaystyle\sf {:}\longrightarrow \dfrac {3x (5x+20)+20 (5x+20)}{4x+20}=\dfrac {35}{6}

\\\qquad\quad\displaystyle\sf {:}\longrightarrow \dfrac {15x^2+60x+100x+400}{4x+20}=\dfrac {35}{6}

\\\qquad\quad\displaystyle\sf {:}\longrightarrow \dfrac {15x^2+160x+400}{4x+20}=\dfrac {35}{6}

\\\qquad\quad\displaystyle\sf {:}\longrightarrow 6 (15x^2+160x+400)=35 (4x+20)

\\\qquad\quad\displaystyle\sf {:}\longrightarrow 90x^2+960x+2400=140x+700

\\\qquad\quad\displaystyle\sf {:}\longrightarrow 90x^2+960x-140x+2400-700=0

\\\qquad\quad\displaystyle\sf {:}\longrightarrow 90x^2+820x+1700=0

  • Here ,
  • a=90,b=820,c=1700

use quadratic formula

\boxed{\purple {\sf x=\dfrac {-b\underline{+}\sqrt {b^2-4ac}}{2a}}}

\\\qquad\quad\displaystyle\sf {:}\longrightarrow x=\dfrac {-820\underline{+}\sqrt {(820)^2-4\times 90\times 1700}}{2\times 90}

\\\qquad\quad\displaystyle\sf {:}\longrightarrow x=\dfrac {-820\underline{+}\sqrt {60400}}{180}

\\\qquad\quad\displaystyle\sf {:}\longrightarrow x=\dfrac {-41}{9}+\dfrac {1}{9}\sqrt {151} \quad or\quad \dfrac {-41}{9}-\dfrac{1}{9}\sqrt {151}

  • ignoring negative value

\\\qquad\quad\displaystyle\sf {:}\longrightarrow x=3.2

\rule {250}{1}

\\\qquad\quad\displaystyle\sf {:}\longrightarrow Total\:number\:of\:students=3x+20+4x+20+5x+20

\\\qquad\quad\displaystyle\sf {:}\longrightarrow Total\:number\:of\:students=3x+4x+5x+20+20+20

\\\qquad\quad\displaystyle\sf {:}\longrightarrow Total\:number\:of\:students=12x+60

  • Substitute the value of x

\\\qquad\quad\displaystyle\sf {:}\longrightarrow Total\:number\:of\:students=12 (3.2)+60

\\\qquad\quad\displaystyle\sf {:}\longrightarrow Total\:number\:of\:students=38.4+60

\\\qquad\quad\displaystyle\sf {:}\longrightarrow Total\:number\:of\:students=98.4

\\\qquad\quad\displaystyle\sf {:}\longrightarrow Total\:number\:of\:students=99_{(Approximately)}

\\\\\therefore \sf Total\:Number \:of\:students\:is\:99.


Glorious31: Awesome
Similar questions