Math, asked by Ronaldo2312, 11 months ago

10. The sum of two numbers is 20, and their difference is 2whole 1by 2.
Find the ratio of the numbers.​

Answers

Answered by Anjula
32

Answer

Let the Numbers be x and y.

Given that ;

  • x + y = 20
  • x - y = 2 whole 1/2 = 5/2

★ x + y = 20 --(i)

=> x = 20 - y

Putting the Value of x in (ii)

★ x - y = 5/2 --(ii)

=> 20 - y - y = 5/2

=> 20 - 2y = 5/2

=> 20 - 5/2 = 2y

=> (40 - 5)/2 = 2y

=> 35/2 = 2y

=> y = 35/4

Putting Value of y in (i)

=> x = 20 - y

=> x = 20 - 35/4

=> x = (80 - 35)/4

=> x = 45/4

_____________________________

➡ Ratio of x and y

➡ x : y

➡ 45/4 : 35/4

➡ 9 : 7

Answered by Anonymous
81

AnswEr :

  \huge\red {\boxed{ \bold{x : y = 9 : 7}}}

Explanation :

Given :

• Sum of two Numbers is 20

• Difference of that Number is \large\tt{2\frac{1}{2}}

To Find :

• Ratio of the Numbers.

Solution :

Let the Numbers be x and, y.

  • x + y = 20
  • x - y = \large\tt{</strong><strong>2</strong><strong>\frac{1}{2}} = \large\tt{\frac{</strong><strong>5</strong><strong>}{2}}

A.T.Q.

➟ x + y = 20

➟ x - y = \large\tt{\frac{5}{2}}

________________

➟ x + x = 20 + \large\tt{\frac{5}{2}}

➟ 2x = \large\tt{\frac{(40+5)}{2}}

➟ 2x = \large\tt{\frac{45}{2}}

➟ x = \huge\tt{\frac{45}{4}}

━━━━━━━━━━━━━━━━━━━━━━━━

Using the Value of x as \</u><u>l</u><u>a</u><u>r</u><u>ge\tt{\frac{45}{4}}

➟ x + y = 20

➟ y = 20 - x

➟ y = 20 - \large\tt{\frac{45}{4}}

➟ y = \large\tt{\frac{(80-45)}{4}}

➟ y = \huge\tt{\frac{35}{4}}

━━━━━━━━━━━━━━━━━━━━━━━━

Ratio of x and y is -

\Rightarrow \bold{x : y}

 \large\Rightarrow \bold{ \frac{45}{4}  :  \frac{35}{4} }

 \scriptsize \blacksquare \:  \bold{dividing \: each \: term \: by \:  \frac{5}{4} }

 \huge\Rightarrow \bold{9 : 7}

Similar questions