Math, asked by neha72387, 3 months ago

10. Two plots of land have the same perimeter. One is a square of side 64 m and the other is a
rectangle of length 70 m. Find the breadth of the rectangular plot. Which plot has the
greater area and by how much?
JENO​

Answers

Answered by sia1234567
2

 \huge\bold{answer - }

 \color{blue}according \: to \: the \: question \: there \: are \: 2 \: plots -  \:  \\   \pink{\star \: square}\\   \pink{\star \: rectangle}

 \huge\bold \purple{given - }

  \color{red}\dagger \: perimeter \: of \: square = perimeter \: of \: rectangle \\   \color{red}\dagger \: one \: side \: of \: square = 64 \: m \\  \color{red}\dagger \:  length \: of \: rectangle \:  = 70 \: m

 \huge\bold\purple{find - }

   \orange{\leadsto \:the \: breadth \: of \: the \: rectangle}\\   \orange{\leadsto \: which \: plot \: is \: greater \: and \: by \: how \: much \: ? }

 \huge \sf{solution}

 \circ \green{first \: we \: will \: solve \: square \: plot \: measurements}

 \pink{as \: 1 \: side \: of \: square = 64} \\ \color{blue} so \: perimeter = 4 \times s = 4 \times 64 \\  =  \fbox{256}

 \dagger \: as \: perimeter \: of \: square \: and \: rectangle \: are \: equal \\  \therefore \: perimeter \: of \: rectangle = 256

 \green{now \: lets \: solve \: rectangle \: measurement's }

 \pink{\star \: length \:  = 70m}\\   \pink{\star \: breadth = b}\\  \pink{\star  \: perimeter = 256}

p = 2(70 + b) \\ p = 140 + 2b \\ 256 = 140 + 2b \\ 2b = 256 - 140 \\ 2b = 116 \\  \color{blue}b =  \frac{116}{2}  = \fbox{ 58}

  \green{\hookrightarrow \: now \: lets \: find \: area \: of \: both \: plots}

 \blacktriangleright \: area \: of \: rectangle = l \times b \\  = 70 \times 58 \\  = \color{blue}{4060 \: m}^{2}

 \blacktriangleright \:area \: of \: square = s \times s \\ =  64 \times 64 \\  =  \color{blue} {4096 \: m}^{2}

  \color{purple}\therefore \: square \: plot \: is \: larger \: by \: 36 \: m

________________________________

Answered by muskanshi536
2

Step-by-step explanation:

llxXItzAshXxll

 \huge\bold{answer - }

 \color{blue}according \: to \: the \: question \: there \: are \: 2 \: plots -  \:  \\   \pink{\star \: square}\\   \pink{\star \: rectangle}

 \huge\bold \purple{given - }

  \color{red}\dagger \: perimeter \: of \: square = perimeter \: of \: rectangle \\   \color{red}\dagger \: one \: side \: of \: square = 64 \: m \\  \color{red}\dagger \:  length \: of \: rectangle \:  = 70 \: m

 \huge\bold\purple{find - }

   \orange{\leadsto \:the \: breadth \: of \: the \: rectangle}\\   \orange{\leadsto \: which \: plot \: is \: greater \: and \: by \: how \: much \: ? }

 \huge \sf{solution}

 \circ \green{first \: we \: will \: solve \: square \: plot \: measurements}

 \pink{as \: 1 \: side \: of \: square = 64} \\ \color{blue} so \: perimeter = 4 \times s = 4 \times 64 \\  =  \fbox{256}

 \dagger \: as \: perimeter \: of \: square \: and \: rectangle \: are \: equal \\  \therefore \: perimeter \: of \: rectangle = 256

 \green{now \: lets \: solve \: rectangle \: measurement's }

 \pink{\star \: length \:  = 70m}\\   \pink{\star \: breadth = b}\\  \pink{\star  \: perimeter = 256}

p = 2(70 + b) \\ p = 140 + 2b \\ 256 = 140 + 2b \\ 2b = 256 - 140 \\ 2b = 116 \\  \color{blue}b =  \frac{116}{2}  = \fbox{ 58}

  \green{\hookrightarrow \: now \: lets \: find \: area \: of \: both \: plots}

 \blacktriangleright \: area \: of \: rectangle = l \times b \\  = 70 \times 58 \\  = \color{blue}{4060 \: m}^{2}

 \blacktriangleright \:area \: of \: square = s \times s \\ =  64 \times 64 \\  =  \color{blue} {4096 \: m}^{2}

  \color{purple}\therefore \: square \: plot \: is \: larger \: by \: 36 \: m

________________________________

Similar questions