Math, asked by pushpan0987, 6 months ago

10/x+y+2/x-y=4,15/x+y-5/x-y=-2.by elimination method or subtitution method>3

Answers

Answered by Anonymous
1

Solution:-

equation

 \rm \to \:  \dfrac{10}{x + y}  +  \dfrac{2}{x - y}  = 4  \:  \:  \:  \:  \: ...(i)eq

 \rm \to \:  \dfrac{15}{x + y}  -  \dfrac{5}{x - y}  =  - 2 \:  \:  \:  \:  \: ....(ii)eq

let

 \rm \to \:  \dfrac{1}{x + y}  = u \:  \: and \:  \:  \dfrac{1}{x - y}  = v

we can write as

 \rm \to10u + 2v = 4 \:  \:  \:  \: ....(i)

 \rm \to15u - 5v =  - 2 \:  \:  \:  \: ...(ii)eq

 \rm \: 10u + 2v = 4  \:  \:  \:  \: ....(  \times - 5)\\  \rm \:  15u - 5v =  - 2 \:  \:  \:  \: .......( \times 2)

We get

 \rm  \:  - 50u - 10v =  - 20 \:  \:  \: ...(i) \\  \rm30u - 10v  =  - 4 \:  \:  \:  \:  \:  \:  \:  \: ....(ii)

Now sub the equation

 \rm \to \:  - 50u - 10v - 30u + 10v  = - 20 + 4

 \rm \to  - 80u =  - 16

 \rm \to \: u =  \dfrac{1}{5}

Now put the value of u on( ii)nd eq

 \rm \to15u - 5v =  - 2 \:  \:  \:  \: ...(ii)eq

 \rm \to15 \times  \dfrac{1}{5} - 5v =  - 2 \:  \:  \:  \: ...(ii)eq

 \rm \to \: 3 - 5v =  - 2

 \rm \to \:  - 5v =  - 5

 \rm \to \: v = 1

Now take

\rm \to \:  \dfrac{1}{x + y}  = u \:  \: and \:  \:  \dfrac{1}{x - y}  = v

By putting the value of u and v we get

\rm \to \:  \dfrac{1}{x + y}  =  \dfrac{1}{5}  \:  \: and \:  \:  \dfrac{1}{x - y}  = 1

Now we get

 \rm \: x + y = 5 \:  \:  \:  \: ...(i)

 \rm \: x - y = 1 \:  \:  \:  \:  \: ...(ii)

Subtract the equation

 \rm \: x + y - x + y = 5 - 1

 \rm \to2y = 4

 \rm \to \: y = 2

Put the value of y on ii eq

 \rm \to \: x - y = 1

 \rm \: x - 2 = 1

 \rm \: x = 3

So value of x = 3 and y = 2

Similar questions