Math, asked by TbiaSupreme, 1 year ago

(-100)+(-92)+(-84)+ ... +92, Find the sum of the given equation.

Answers

Answered by gaurav2013c
34
a = - 100

d = 8

L = 92

=> 92 = a + (n-1) d

=> 92 = - 100 + (n-1) (8)

=> 192 = (n-1) (8)

=> n - 1 = 24

=> n = 25

Now,

Required sum = n/2 ( a + L)

= 25 /2 ( - 100 + 92)

= 25 × (-8) /2

= 25 × (-4)

= - 100
Answered by rakeshmohata
8
Hope u like my process
===========================
The given sum is of Arithmetic Progression.
_____________________
✔️ Formula to be used :-
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=

=>
 = > \bf \: sum = \frac{n}{2} (a + l) \\ \\ ( \bf \: where \: \: a = 1st \: \: term \: ..l = last \: \: term) \\ \\ \\ = > nth \: \: term = \bf \: a + (n - 1)d \\ \\ (where \: \bf d \: = \: difference) \\

_____________________
Given :-
=-=-=-=-=
=> a =  \bf \: - 100 \: \:

=> d =  \bf \: 8\: \:

So,

 = > \bf \: a + (n - 1)d = 92 \\ \\ or. \: \: - 100 + (n - 1)8 = 92 \\ \\ or. \: \: (n - 1)8 = 92 + 100 \\ \\ or. \: \: n - 1 = \frac{192}{8} = 24 \\ \\ or. \bf \: \: \: n = 24 + 1 = 25
_________________________

 = > \bf \: sum = \frac{n}{2} (a + l) = \frac{25}{2} ( - 100 + 92) \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \bf = \frac{25}{2} \times- 8 = - 100
_________________________
So

The required sum =  \bf \: - 100 \: \:
_________________________

Hope this is ur required answer

Proud to help you
Similar questions