Chemistry, asked by uyush44314, 9 months ago

100 ml of O2 gas diffuses through a porous membrane in 20 seconds. 200 ml of gas ‘X’ takes 40 seconds to diffuse through same membrane under identical conditions. Molecular weight of gas ‘X’ is​

Answers

Answered by simranghanchi4474
0

Answer:

1289

Explanation:

Rate & diffusion of gas O² = 100 ml

Rate & diffusion of gas X = 200 ml

mass & gass (M1) O²= 32 gm

mass & gass (M2) O²= ? gm

formula :

rate1 \div rate2 = \sqrt{m1 \div m2}

100 \div 200 =  \sqrt{32 \div m2}

1 \div 2 = 4 \sqrt2 \div  \sqrt{m2}

 \sqrt{m2}  = 4 \sqrt{2}  \times 2

 \sqrt{m2}  = 8 \sqrt{2}

m2 = 8 {}^{2} \times  2

m2 =  64 \times 2

m2 = 128

X is Iodine = 128

Answered by nirman95
1

Given:

100 ml of O2 gas diffuses through a porous membrane in 20 seconds. 200 ml of gas ‘X’ takes 40 seconds to diffuse through same membrane under identical conditions.

To find:

Molecular weight of X .

Calculation:

Let rate be R , time be t and molecular mass be m;

R \:  \propto \:  \dfrac{1}{ \sqrt{m} }  \:  \propto \:  \dfrac{1}{t}

 \boxed{ =  > t  \:  \propto \:  \sqrt{m} }

So, taking corresponding ratios:

 \sf{ \therefore \:  \dfrac{t_{oxygen}}{t_{X}}  =  \dfrac{ \sqrt{ m_{oxygen}} }{ \sqrt{ m_{X}} } }

 \sf{  =  >  \:  \dfrac{20}{40}  =  \dfrac{ \sqrt{ m_{oxygen}} }{ \sqrt{ m_{X}} } }

 \sf{  =  >  \:  \dfrac{20}{40}  =  \dfrac{ \sqrt{32} }{ \sqrt{ m_{X}} } }

 \sf{  =  >  \:  \dfrac{1}{2}  =  \dfrac{ \sqrt{32} }{ \sqrt{ m_{X}} } }

 \sf{  =  >  \:  \dfrac{1}{4}  =  \dfrac{ 32}{ m_{X}} }

 \sf{  =  >  \: m_{X} = 32 \times 4}

 \sf{  =  >  \: m_{X} = 128 \: g {mol}^{ - 1} }

So, final answer is:

 \boxed{ \rm{\: m_{X} = 128 \: g {mol}^{ - 1} }}

Similar questions