Math, asked by MithuDas, 1 year ago

100 points
FACTORISE:-

 {x}^{2}  - 3x - 2
NEED CORRECT EXPLANATION. ..... ....... ...​

Answers

Answered by ShuchiRecites
8

Shirdharacharya Formula

→ x = (- b ± √D)/2a, where D = b² - 4ac.

Note that if

  • D > 0 then real and distinct roots
  • D = 0 then real and equal roots
  • D < 0 then imaginary roots

→ x² - 3x - 2

→ D = (- 3)² - 4(1)(- 2)

→ D = 9 + 8

D = 17

→ x = [- (- 3) ± √17]/2(1)

→ x = (3 ± √17)/2

→ x² - 3x - 2 = [x - (3 + √17)/2][x - (3 - √17)/2]

Answer: [x-(3+√17)/2][x-(3-√17)/2]

Answered by LovelyG
5

Solution:

Given equation ;

x² - 3x - 2 = 0

On comparing the given equation with ax² + bx + c = 0, we get -

  • a = 1
  • b = - 3
  • c = - 2

Discriminant = b² - 4ac

⇒ D = (-3)² - 4 * 1 * (-2)

⇒ D = 9 + 8

⇒ D = 17

 \tt x =  \frac{ - b \pm  \sqrt{D} }{2a}  \\  \\ \rightarrow \tt x =  \frac{ - ( - 3) \pm  \sqrt{17} }{2 \times 1}  \\  \\ \rightarrow \tt x =  \frac{3 \pm  \sqrt{17} }{2}

Therefore,

 \boxed{\bf x =  \frac{3 +  \sqrt{17} }{2}  \: or \: x =  \frac{3 -  \sqrt{17} }{2}}

Factorisation ;

⇒ x² - 3x - 2

\sf \left[\dfrac{x - (3+\sqrt{17})}{2}\right] \left[\dfrac{x - ( 3 - \sqrt{17})}{2} \right]

Similar questions