Math, asked by hsjml, 1 year ago

100 points.

If log base 2(x-1)+log base2(x+1) = 3.
Then find x..

Anybody plzz answer......​

Answers

Answered by BraɪnlyRoмan
143

\huge \boxed{ \underline{ \underline{ \bf{Answer}}}}

GIVEN :

 \sf{log_{2}(x-1) + log_{2}(x+1) = 3}

TO FIND :

Value of 'x'.

SOLUTION :

 \implies \sf{log_{2}(x-1) + log_{2}(x+1) = 3}

By using Identity log(a)+log(b)= log(ab)

 \implies \sf{log_{2}(x-1)(x+1) = 3}

 \implies \sf{log_{2}( {x}^{2} - {1}^{2} ) = 3}

 \implies \sf{log_{2}( {x}^{2} - {1} ) = 3}

 \implies \sf{  \cancel{log}({x}^{2} - 1) =  {2}^{3} }

 \implies \sf{{x}^{2} - 1 =  8}

 \implies \sf{{x}^{2}  =  9}

 \sf{ \implies \: x = 3 \: \:  \:  or \:  \:  \: x =  - 3(not \: possible)}

 \boxed{ \sf{Hence, \:  Value  \: of \:  x = 3 }}

Answered by Anonymous
19

Step-by-step explanation:

  log_{2}(x - 1)  +  log_{2}(x +  1)  = 3 \\  \\  log_{2}(x - 1) (x + 1) = 3 \\  \\  log_{2}( {x}^{2} - 1 )  = 3 \\  \\ now \\  \\  {2}^{3}  =  {x}^{2}  - 1 \\  \\ 8 =  {x}^{2}  - 1 \\  \\  {x}^{2}  - 1  -  8 = 0 \\  \\  {x}^{2}  - 9 = 0 \\  \\  {x}^{2}  -  {3}^{2}  = 0 \\  \\ (x + 3)(x - 3) = 0 \\  \\  \\ therefore \\  \\ x = 3 \:  \: \: or \:  x =  -  3

Since, negative value is not considerd

Therefore, x = 3

Identities used :

>> log a+ log = log ab

>> a²-b² = (a+b)(a-b)

>> log base a (N) = x => a^x = N

Hope it helps..

Similar questions