Math, asked by Anonymous, 1 year ago

#100 points•


✨✨(Q) X²- 6√x + 0 ✨✨


⛓please solve this ⛓

❤Need quality answers ❤



☺follow me guys ☺

Answers

Answered by Swarup1998
23
\underline{\texttt{Solution :}}

\text{The given equation is}

\mathrm{x^{2}-6\sqrt{x}=0}

\to \mathrm{x^{2}=6\sqrt{x}}

\to \mathrm{(x^{2})^{2}=(6\sqrt{x})^{2}}

\to \mathrm{x^{4}=36x}

\to \mathrm{x^{4}-36x=0}

\to \mathrm{x(x^{3}-36)=0}

\mathrm{So,\:we\:have\:x = 0\:and\:x^{3}-36=0}

\mathrm{Now,\:x^{3}=36}

\to \mathrm{x=36^{\frac{1}{3}}}

\to \mathrm{x = {(6^{2})}^{\frac{1}{3}}}

\to \mathrm{x = 6^{\frac{2}{3}}}

\text{Now, the equation}

\mathrm{x^{3}-36=0\:can\:be\:written\:as}

\to \mathrm{(x-6^{\frac{2}{3}})(x^{2}+6^{\frac{2}{3}}\:x+6^{\frac{4}{3}})=0}

\implies \mathrm{x=6^{\frac{2}{3}}\:,\:x^{2}+6^{\frac{2}{3}}\:x+6^{\frac{4}{3}}=0}

\text{From the 2nd equation, we get}

\mathrm{x=\frac{-6^{\frac{2}{3}}\pm \sqrt{6^{\frac{4}{3}}-4*6^{\frac{4}{3}}}}{2}}

\mathrm{=\frac{-6^{\frac{2}{3}}\pm \sqrt{-3*6^{\frac{4}{3}}}}{2}}

\mathrm{=\frac{-6^{\frac{2}{3}}\pm i6^{\frac{2}{3}}\sqrt{3}}{2}}

\:\:\:\:\:\mathrm{where\:i=\sqrt{-1}}

\mathrm{=6^{\frac{2}{3}}(\frac{-1\pm i\sqrt{3}}{2})}

\therefore \text{the complete solution be}

\mathrm{x=0\:,\:6^{\frac{2}{3}}\:,6^{\frac{2}{3}}(\frac{-1\pm i\sqrt{3}}{2})}

\to \boxed{\mathrm{x=0\:,\:\sqrt[3]{36}\:,\:\sqrt[3]{36}(\frac{-1\pm i\sqrt{3}}{2})}}

\underline{\texttt{To find a single root :}}

\mathrm{Now,\:x^{2}-6\sqrt{x}=0}

\to \mathrm{x^{2}=6x^{\frac{1}{2}}}

\to \mathrm{log(x^{2})=log(6x^{\frac{1}{2}})}

\to \mathrm{2logx=log6+log x^{\frac{1}{2}}}

\to \mathrm{2logx=log6+\frac{1}{2}logx}

\to \mathrm{(2-\frac{1}{2})logx=log6}

\to \mathrm{\frac{3}{2}logx=log6}

\to \mathrm{logx=\frac{2}{3}log6}

\to \mathrm{logx=log6^{\frac{2}{3}}}

\to \mathrm{x=6^{\frac{2}{3}}}

\to \mathrm{x=(6^{2})^{\frac{1}{3}}}

\to \boxed{\mathrm{x= \sqrt[3]{36}}}

Swarup1998: See this answer for complete solution. :)
UltimateMasTerMind: Nice Answer! :)
Anonymous: okhey ^_^ thanks for answering dear sir
Satyamrajput: awsm bhaiya♥️☺️
Swarup1998: Thank you! :)
Swarup1998: :)
Similar questions