100 points solve this don’t give silly answers spend time
Answers
Answer:
Given that,
p = a² b³
Given that,
p = a² b³
q = a³ b
We have to prove that,
L.C.M (p,q) x H.C.F (p,q) = p q
Proof:
Since,
p = a² b³
p = a.a.b.b.b
q = a³ b
q = a.a.a.b
H.C.F (p,q) = a.a.b
H.C.F (p,q) = a² b
L.C.M (p,q) = a.a.a.b.b.b
L.C.M (p,q) = a³ b³
Now, we prove that,
L.C.M (p,q) x H.C.F (p,q) = p q
L.H.S = L.C.M (p,q) x H.C.F (p,q)
L.H.S = (a³ b³) x (a² b)
L.H.S = a⁵ b⁴
R.H.S = (a² b³) x (a³ b)
R.H.S = a⁵ b⁴
which shows that L.H.S = R.H.S
Hence proved.
Thanks.
Read more on Brainly.in - https://brainly.in/question/1903271#readmore
_______________________
we have to show that
13 ×31 ×41 ×63+41 is a composite number(first separate the common numbers)41(13 ×31 ×1 ×63+1)41(25390)41 ×25390therefore the given number is composite number(factor of only prime numbers)
______________________
......................................................
Answer:
Hope it works........................................™✌️✌️