Math, asked by Vivekmoury, 1 year ago

1008 logarithm at the base 12√7

Answers

Answered by Anonymous
5
this is Ur required result
Attachments:
Answered by guptasingh4564
14

Therefore the value of log_{12\sqrt{7} } 1008 is 2

Step-by-step explanation:

Given;

log_{12\sqrt{7} } 1008=?

1008=2\times2\times2\times2\times3\times3\times7=2^{4} \times 3^{2}\times7

We can also write like,

1008=(2^{2}\times3\times\sqrt{7})^{2} =(12\sqrt{7} )^{2}

log_{12\sqrt{7} }(12\sqrt{7})^{2}

=2log_{12\sqrt{7} }(12\sqrt{7})  (∵log_{x}x^{a}  =alog_{x}x)

=2  (∵log_{x}x=1)

∴ The value of log_{12\sqrt{7} } 1008 is 2

Similar questions