Math, asked by pethekiran11, 1 year ago

|101 102 103|
|106 107 108| solve the determinant | 1 2 3 |by using properties

Answers

Answered by MaheswariS
6

\textbf{Given:}

\left|\begin{array}{ccc}101&102&103\\106&107&108\\1&2&3\end{array}\right|

\textbf{To find:}

\text{The value of the given detereminant}

\textbf{Solution:}

\text{Consider,}

\left|\begin{array}{ccc}101&102&103\\106&107&108\\1&2&3\end{array}\right|

=\left|\begin{array}{ccc}101&102&103\\5&5&5\\1&2&3\end{array}\right| R_2\implies\,R_2-R_1

\text{Take 5 common from $R_2$}

=5\left|\begin{array}{ccc}101&102&103\\1&1&1\\1&2&3\end{array}\right|

=5\left|\begin{array}{ccc}100&100&100\\1&1&1\\1&2&3\end{array}\right| R_1\implies\,R_1-R_3

\text{Take 100 common from $R_1$}

=500\left|\begin{array}{ccc}1&1&1\\1&1&1\\1&2&3\end{array}\right| R_1\implies\,R_1-R_3

=0

(\because\textbf{If any two rows (or) columns of a determinant are equal,}

\textbf{then the value of the determinant is zero})

\therefore\bf\left|\begin{array}{ccc}101&102&103\\106&107&108\\1&2&3\end{array}\right|=0

Find more:

1.Prove that:det(x+y x x, 5x+4y 4x 2x, 10x+8y 8x 3x ) =x^3

https://brainly.in/question/4612859

2.The sum of the real roots of the equation | x 6 1 |

| 2 3x (x - 3)| = 0 | 3 2x (x = 2)|

is equal to (A) -4 (B) 0

(C) 6 (D) 1

https://brainly.in/question/160747209

Similar questions