Math, asked by gscsbsb, 2 months ago

101. Find the length of the largest pole that can be
placed in a hall that is 10 m long, 10 broad and
4 m high.
(a) 14.6 m (b) 18.6 m
(c) 16.6 m (d) 20.20 m​

Answers

Answered by mathdude500
3

\large\underline{\sf{Given- }}

  • Length of Hall, l = 10 m

  • Breadth of Hall, b = 10 m

  • Height of hall, h = 4 m

\large\underline{\sf{To\:Find - }}

  • Length of longest pole.

\begin{gathered}\Large{\sf{{\underline{Formula \: Used - }}}}  \end{gathered}

Let us consider a cuboid having length l, breadth b and height h, then longest pole that can be placed in the cuboid is diagonal of cuboid, d given by

 \boxed{ \sf \: Longest_{(pole)}=d \:  =  \sqrt{ {l}^{2} +  {b}^{2} +  {h}^{2}}}

\large\underline{\sf{Solution-}}

Given that

  • Length of Hall, l = 10 m

  • Breadth of Hall, b = 10 m

  • Height of hall, h = 4 m

So,

  • Longest pole that can be placed in room is

\rm :\longmapsto\:Longest_{(pole)}=d =  \sqrt{ {l}^{2}  +  {b}^{2}  +  {h}^{2} }

\rm :\longmapsto\:Longest_{(pole)}=d =  \sqrt{ {(10)}^{2}  +  {(10)}^{2}  +  {(4)}^{2} }

\rm :\longmapsto\:Longest_{(pole)}=d =  \sqrt{100 + 100 + 16}

\rm :\longmapsto\:Longest_{(pole)}=d =  \sqrt{216}

\rm :\longmapsto\:Longest_{(pole)}=d =  \sqrt{6 \times 6 \times 6}

\rm :\longmapsto\:Longest_{(pole)}=d = 6 \sqrt{6}

\rm :\longmapsto\:Longest_{(pole)}=d = 14.6 \: m

 \bf \: Hence,  \: Option \:  (a)  \: is \:  correct.

─━─━─━─━─━─━─━─━─━─━─━─━─

Additional Information :-

\boxed{ \sf{ \: TSA{(cone)} = {6(edge)}^{2} }}

\boxed{ \sf{ \: TSA{(cuboid)} = 2(lb + bh + hl)}}

\boxed{ \sf{ \: TSA{(cone)} = \pi \: r(l + r)}}

\boxed{ \sf{ \: TSA{(cuboid)} = 2(lb + bh + hl)}}

\boxed{ \sf{ \: Volume_{(cube)} = {(edge)}^{3} }}

\boxed{ \sf{ \: Volume_{(cone)} = \dfrac{1}{3} \pi \: {r}^{2} h}}

\boxed{ \sf{ \: Volume_{(cuboid)} = lbh}}

\boxed{ \sf{ \: CSA{(cylinder)} = 2\pi \: rh}}

Similar questions