Math, asked by Sagayamari, 5 months ago

?
105.
sin 35° tan 12°
cos 55° cot 78°
sin 18°
cos 72°
(1) 1
(2) 0
(3) 3
(4) -1​

Answers

Answered by amitnrw
1

Given :   Sin35°  Tan12° Sin 18° / ( Cos 55° Cot78° Cos 72°)

To Find :  Value

(1) 1

(2) 0

(3) 3

(4) -1​

Solution:

Sin35°  Tan12° Sin 18° / ( Cos 55° Cot78° Cos 72°)

Cos x = Sin(90 - x)  or Sinx = Cos(90 - x)

Tanx = Cot (90- x) or Cotx = Tan(90 - x)

Cos 55° = Sin35°

Cot78° = Tan 12°

Cos 72° = Sin 18°

Sin35°  Tan12° Sin 18° / ( Cos 55° Cot78° Cos 72°)

= Sin35°  Tan12° Sin 18° / ( Sin35°  Tan12° Sin 18° )

= 1

Sin35°  Tan12° Sin 18° / ( Cos 55° Cot78° Cos 72°) = 1

Correct value is 1

Learn More:

Ifsin 990° sin 780° sin 390°+=K(tan 405° – tan 360°) then Kicos 540 ...

https://brainly.in/question/22239477

Maximum value of sin(cos(tanx)) is(1) sint (2)

https://brainly.in/question/11761816

evaluate cot[90-theta].sin[90-theta] / sin theta+cot 40/tan 50 - [cos ...

https://brainly.in/question/2769339

Answered by kundan8757783426
2

Answer:

1 right answer hoga option (1)

Similar questions