?
105.
sin 35° tan 12°
cos 55° cot 78°
sin 18°
cos 72°
(1) 1
(2) 0
(3) 3
(4) -1
Answers
Given : Sin35° Tan12° Sin 18° / ( Cos 55° Cot78° Cos 72°)
To Find : Value
(1) 1
(2) 0
(3) 3
(4) -1
Solution:
Sin35° Tan12° Sin 18° / ( Cos 55° Cot78° Cos 72°)
Cos x = Sin(90 - x) or Sinx = Cos(90 - x)
Tanx = Cot (90- x) or Cotx = Tan(90 - x)
Cos 55° = Sin35°
Cot78° = Tan 12°
Cos 72° = Sin 18°
Sin35° Tan12° Sin 18° / ( Cos 55° Cot78° Cos 72°)
= Sin35° Tan12° Sin 18° / ( Sin35° Tan12° Sin 18° )
= 1
Sin35° Tan12° Sin 18° / ( Cos 55° Cot78° Cos 72°) = 1
Correct value is 1
Learn More:
Ifsin 990° sin 780° sin 390°+=K(tan 405° – tan 360°) then Kicos 540 ...
https://brainly.in/question/22239477
Maximum value of sin(cos(tanx)) is(1) sint (2)
https://brainly.in/question/11761816
evaluate cot[90-theta].sin[90-theta] / sin theta+cot 40/tan 50 - [cos ...
https://brainly.in/question/2769339
Answer:
1 right answer hoga option (1)