Math, asked by mallakjugal, 1 year ago

10C1 + 10C3 + 10C5 + 10C7 + 10C9 is equal to

Answers

Answered by reddyakash651
1

Answer:512

Step-by-step explanation:

10C1=10

10C3= 120

10C5=252

10C7=120

10C9=10

Therefore by adding we get;

10+120+252+120+10=512

Answered by pinquancaro
4

^{10}C_1+^{10}C_3+^{10}C_5+^{10}C_7+^{10}C_9=512

Step-by-step explanation:

Given : Expression ^{10}C_1+^{10}C_3+^{10}C_5+^{10}C_7+^{10}C_9

To find : The value of the expression ?

Solution :

The formula of combination is ^nC_r=\frac{n!}{r!(n-r)!}

 ^{10}C_1+^{10}C_3+^{10}C_5+^{10}C_7+^{10}C_9

Applying in the expression,  

=\frac{10!}{1!(10-1)!}+\frac{10!}{3!(10-3)!}+\frac{10!}{5!(10-5)!}+\frac{10!}{7!(10-7)!}+\frac{10!}{9!(10-9)!}

=\frac{10\times 9!}{1\times 9!}+\frac{10\times 9\times 8\times 7!}{3\times 2\times7!}+\frac{10\times 9\times 8\times 7\times 6\times 5!}{5\times 4\times 3\times 2\times 5!}+\frac{10\times 9\times 8\times 7!}{3\times 2\times7!}+\frac{10\times 9!}{9!\times 1!}

=10+120+252+120+10

=512

Therefore, ^{10}C_1+^{10}C_3+^{10}C_5+^{10}C_7+^{10}C_9=512

#Learn more

Verify that 8C4+8C3 = 9C4

https://brainly.in/question/11039256

Similar questions