Math, asked by rajkumar564097, 9 months ago

10th term of an.Ap is 30 and 7th term is 18 find the 17th term?

Answers

Answered by Anonymous
1

\huge\underline\mathbb{\red Q\pink{U}\purple{ES} \blue{T} \orange{IO}\green{N :}}

10th term of an.Ap is 30 and 7th term is 18 find the 17th term?

\huge\underline\mathbb{\red S\pink{O}\purple{LU} \blue{T} \orange{IO}\green{N :}}

Given that,

  • a10 = 30
  • a7 = 18

To find,

  • a17 = ?

Let,

\sf\: ◼ \: a_{10} = a + 9d = 30 ..... (i)

\sf\: ◼  \: a_{7} = a + 6d = 18 ..... (ii)

From the equations (i) & (ii), we get

\sf\: ⟹ 3d = 12

\sf\:⟹ d = \frac{12}{3}

\sf\:⟹ d = 4

\boxed{\bf{∴ d = 4}}

  • Substitute the value of d in (i) .

\sf\:⟹ a + 9(4) = 30

\sf\:⟹ a + 36 = 30

\sf\:⟹ a = 30 - 36

\sf\:⟹ a = - 6

Now,

\sf\:↪ a_{17} = a + 16d

  • Substitute the values.

\sf\:↪ a_{17}= -6 + 16(4)

\sf\:↪ a_{17}= -6 + 64

\sf\:↪ a_{17}= 58

\underline{\boxed{\bf{\purple{∴  Hence, 17^{th} \:  term  \: of  \: AP \:  is  \: 58.}}}}</p><p>

⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇

Important formulae in AP :

\sf\: ◼ a_{n} = a + (n - 1)d

\sf\:◼  \: S_{n} = \frac{n}{2} [ 2a + (n - 1)d ]

⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆

Similar questions