Math, asked by rajkumar564097, 9 months ago

10th term of an ap is 30 and 7th term is 8 find 17th term?​

Answers

Answered by Anonymous
9

\large\bf\underline \blue {To \:  \mathscr{f}ind:-}

  • we need to find the 17th term

 \huge\bf\underline \purple{ \mathcal{S}olution:-}

 \bf\underline{\red{Given:-}}

  • 10th term of AP = 30
  • 7th term of AP = 8

we know that,

 \large \bigstar \dag \red{\bf \: a_n = a + (n -1 )d}

So,

⇝10th term = a + 9d = 30.....1)

⇝7th term = a + 6d = 8 ......2)

  • From equation 1) and 2)

⠀⠀⠀⠀⠀a + 9d = 30

⠀⠀⠀⠀⠀a + 6d = 8

⠀⠀⠀⠀⠀-- ⠀⠀--⠀--⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀3d = 22

⠀⠀⠀⠀⠀⠀⠀⠀d = 22/3

  • putting value of d in 1)

↛ a + 9d = 30

↛ a + 9 × 22/3 = 30

↛ a + 66 = 30

↛ a = 30 - 66

  • → a = -36

Now,

  • 17th term of AP = a + 16d

↛ a17 = -36 + 16 × 22/3

↛ a17 = -36 + 352/3

↛ a17 = -108 + 352/3

↛ a17 = 244/3

Hence,

  • 17th term of AP is 244/3

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
4

\it\red{\underline{\underline{Answer:}}}

\sf{The \ 17^{th} \ term \ of \ AP \ is \ \dfrac{244}{3}.}

\it\orange{Given:}

\sf{In \ an \ AP,}

\sf{\longmapsto{t_{10}=30}}

\sf{\longmapsto{t_{7}=8}}

\it\pink{To \ find:}

\sf{17^{th} \ term \ of \ the \ AP.}

\it\green{\underline{\underline{Solution:}}}

\boxed{\sf{t_{n}=a+(n-1)d}}

\sf{According \ to \ the \ first \ condition. }

\sf{t_{10}=a+9d}

\sf{\therefore{a+9d=30...(1)}}

\sf{According \ to \ the \ second \ condition. }

\sf{t_{7}=a+6d}

\sf{\therefore{a+6d=8...(2)}}

\sf{Subtract \ equation(2) \ from \ equation(1), \ we \ get}

\sf{a+9d=30}

\sf{-}

\sf{a+6d=8}

__________________

\sf{3d=22}

\boxed{\sf{\therefore{d=\dfrac{22}{3}}}}

\sf{Substitute \ d=\dfrac{22}{3} \ in \ equation(2), \ we \ get}

\sf{\leadsto{a+6\times\dfrac{22}{3}=8}}

\sf{\leadsto{a+44=8}}

\sf{\leadsto{a=8-44}}

\boxed{\sf{\leadsto{a=-36}}}

\sf{Now,}

\sf{a=-36 \ and \ d=\dfrac{22}{3}}

\sf{But, \ t_{n}=a+(n-1)d}

\sf{\therefore{t_{17}=a+16d}}

\sf{\therefore{t_{17}=-36+16\times\dfrac{22}{3}}}

\sf{\therefore{t_{17}=-36+\dfrac{352}{3}}}

\sf{\therefore{t_{17}=\dfrac{-108+352}{3}}}

\sf{\therefore{t_{17}=\dfrac{244}{3}}}

\sf\purple{\tt{\therefore{The \ 17^{th} \ term \ of \ AP \ is \ \dfrac{244}{3}.}}}

Similar questions