Math, asked by nick12356, 2 months ago

10X
(i) The sum of the 3rd and 7th terms of an A.P. is 32 and their product is 220. Find
the sum of first twenty-one terms of the A.P. (Take the value of d positive.)​

Answers

Answered by user0888
9

Given that:-

  • a_{3}+a_{7}=32
  • a_{3}\cdot a_{7}=220

To find:-

S_{21} (The sum of the first 21st terms.)

Solution.

Step 1. Quadratic Equation

We don't know about each value, but we are given their sum and product. Here, a quadratic equation is used to find both.

For an equation to have x=a_{3},a_{7} as roots, the factors should be x-a_{3}, x-a_{7}.

(x-a_{3})(x-a_{7})=0 is an equation having both of the terms as roots.

According to the given condition,

\rightarrow (x-a_{3})(x-a_{7})=0

\rightarrow x^2-(a_{3}+a_{7})x+a_{3}\cdot a_{7}=0

\rightarrow x^2-32x+220=0

\rightarrow (x-10)(x-22)=0

\therefore a_{3}=10 ,\;a_{7}=22\;(\because a_{3}<a_{7})

Step 2. Finding the Sequence

Common Difference

\rightarrow d=\dfrac{a_{7}-a_{3}}{7-3} =\dfrac{12}{4} =3

First Term

\rightarrow a_{3}=a_{1}+2d

\rightarrow 10=a_{1}+6

\therefore a_{1}=4

Last Term

\rightarrow a_{21}=a+20d

\rightarrow a_{21}=4+20\times 3

\therefore a_{21}=64

Step 3. Series

\rightarrow S_{21}=\dfrac{21(a_{1}+a_{21})}{2}

\rightarrow S_{21}=\dfrac{21\times (4+64)}{2}

\rightarrow S_{21}=\dfrac{21\times 68}{2}

\rightarrow S_{21}=21\times 34

\therefore \boxed{S_{21}=714}

So, the sum of the first 21 terms is \boxed{714}.

Answered by Mister360
4

Step-by-step explanation:

Given:-

The sum of third and seventh term of an AP is 32 and their product is 220.

To find:-

\sf S_{21}

Solution:-

We know that,

\qquad\quad\displaystyle{:}\rightarrowtail t_3=a+2d

\qquad\quad\displaystyle{:}\rightarrowtail t_7=a+6d

ATQ

\qquad\quad\displaystyle{:}\rightarrowtail t_3+t_7=32

\qquad\quad\displaystyle{:}\rightarrowtail a+2d+a+6d=32

\qquad\quad\displaystyle{:}\rightarrowtail 2a+8d=32

\qquad\quad\displaystyle{:}\rightarrowtail a+4d=14

\qquad\quad\displaystyle{:}\rightarrowtail a=14-4d\dots\dots(1)

Again

\qquad\quad\displaystyle{:}\rightarrowtail (a+2d)(a+6d)=220

\qquad\quad\displaystyle{:}\rightarrowtail a(a+6d)+2d(a+6d)=220

\qquad\quad\displaystyle{:}\rightarrowtail a^2+6ad+2ad+12d^2=220

\qquad\quad\displaystyle{:}\rightarrowtail a^2+8ad+12d^2=220

  • Substitute the value of a

\qquad\quad\displaystyle{:}\rightarrowtail (14-4d)^2+12d^2+8ad=220

\qquad\quad\displaystyle\sf{:}\rightarrowtail {196-112d+16d^2+12d^2+8ad=220}

  • if we solve further we will get

\qquad\quad\displaystyle{:}\rightarrowtail d^2=9

\qquad\quad\displaystyle{:}\rightarrowtail d=\sqrt{9}

\qquad\quad\displaystyle{:}\rightarrowtail d=3\:or\:-3

\qquad\quad\displaystyle{:}\rightarrowtail d=3(as given in question)

  • Now substitute the value of d in eq(1)

\qquad\quad\displaystyle{:}\rightarrowtail a=14-4d=14-4(3)

\qquad\quad\displaystyle{:}\rightarrowtail a=14-12=2

______________________________

\qquad\quad\displaystyle{:}\rightarrowtail t_1=a+d=2+3=5

\qquad\quad\displaystyle{:}\rightarrowtail t_{21}=a+20d=2+60=62

As we know that

\boxed{\mathfrak {S_n}=\mathscr{\dfrac{n}{2}(a+\ell)}}

  • l stands for last term

\qquad\quad\displaystyle{:}\rightarrowtail S_{21}=\dfrac{21}{2}(2+62)

\qquad\quad\displaystyle{:}\rightarrowtail S_{21}=\dfrac{21}{2}(64)

\qquad\quad\displaystyle{:}\rightarrowtail S_{21}=21\times 32

\qquad\quad{:}\rightarrowtail {\mathcal S_{21}=672}

Similar questions