Math, asked by krishnamalviya1616, 6 months ago

10x2+5x-2=0 by quadraric method

Answers

Answered by Anonymous
1

I think your question is wrong it can't be solved by quadratic method but can be solved by other methods.

Answered by aryan073
0

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

 \:  \:  \bigstar \large \green{ \bold{ \underline{ \underline{ \: correct \: answer}}}}

 \:  \large   \underline{\boxed{ \bf{ \color{cyan}given}}} :

 \:  \bf{10 {x}^{2}  + 5x - 2 = 0 \: by \: quadratic \: equation}

 \:  \:  \large \orange{ \bold{ \underline{ \underline{correct \: explaination}}}}

 \:  \implies \displaystyle \sf{10 {x}^{2}  + 5x - 2 = 0}

 \:  \:  \implies \underline{ \diamondsuit \:  \displaystyle \sf{by \: determinant \: form}}

 \:  \:  \implies \displaystyle \sf{ {b}^{2}  - 4ac}

 \:  \:  \implies \displaystyle \sf{ {(5)}^{2}  - 4(10) ( - 2)}

 \:  \:  \implies \displaystyle \sf{25  + 80} = 105

   \:  \:  \\  \implies  \underline{\displaystyle \sf{ \diamondsuit \: by \: formula \:method}}

 \:  \:  \implies \displaystyle \sf{x =  \frac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a} }

 \:  \:  \implies \displaystyle \sf{x =  \frac{ - 5  \pm \sqrt{105} }{2 \times 10} }

 \:  \:  \:  \\  \implies \displaystyle \sf{x =  \frac{ - 5  \pm \sqrt{105}}{20} }

 \:  \:  \\  \implies \displaystyle \sf{x =  \frac{ - 5  +  \sqrt{105} }{20}  \: and \: x =  \frac{ - 5 -  \sqrt{105} }{20} }

 \:  \heartsuit \boxed{ \boxed{ \underline{ \bf{the \: roots \: are \: x =   \frac{ - 5 -  \sqrt{105} }{20}  \: and \: x =  \frac{ - 5 +  \sqrt{105} }{20} }}}}

Similar questions