Math, asked by Fozail1221, 4 months ago

₹11,000 is invested at 6% interest p.a. Find the interest and the amount at the end of two years.​

Answers

Answered by suraj5070
138

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

\tt ₹11,000\: is \:invested\: at\: 6\%\: interest\: p.a. \:\\\tt Find\: the\: interest\: and\: the\: amount\: at\: the\\\tt end\: of\: two \:years.

 \sf \bf \huge {\boxed {\mathbb {ANSWER}}}

 \sf \bf  {\boxed {\mathbb {GIVEN}}}

  •  \sf \bf Principal\:amount(P) = ₹11000
  •  \sf \bf Rate\:of\:intrest(r) =6\%
  •  \sf \bf Time(t) =2\:years

 \sf \bf  {\boxed {\mathbb {TO\:FIND}}}

  •  \sf \bf Simple \:Intrest
  •  \sf \bf Total\:amont

 \sf \bf  {\boxed {\mathbb {SOLUTION}}}

{\boxed {\boxed {\color{blue} {S.I=\dfrac{P \times r \times t}{100}}}}}

 \sf \bf S.I=Simple \:intrest

 \sf \bf P=principal

 \sf \bf r=rate\:of\:intrest

 \sf \bf t=time

 \tt {\underbrace {Substitute\:the\:values}}

 \sf \bf \implies S.I=\dfrac{11000 \times 6 \times 2}{100}

 \sf \bf \implies S.I=\dfrac{132000}{100}

 \sf \bf \implies S.I=\dfrac{1320\cancel {00}}{1\cancel {00}}

\implies {\boxed {\color{green} {\sf \bf Simple \:Intrest(S.I) =1320}}}

------------------------------------------------------------

 {\boxed {\boxed {\color{orange} {\sf \bf Total\:amount=(principal) +(Simple \:intrest)}}}}

 \sf \bf \implies Total\:amount=11000+1320

 \implies {\boxed{\color{red} {Total\:amount=₹12320}}}

 \sf \bf \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

__________________________________________

 \sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 \tt {\overbrace {\underbrace {\color{purple}{Simple\:intrest}}}}

\tt Simple\: interest\: is\: interest\: calculated\: on\\\tt the \:principal\: portion\: of \:a\: loan \:or\: the \:original\\\tt contribution\: to\: a \:savings\: account\:. Simple\: interest\\\tt does\: not\: compound\:, meaning\: that \:an\: account\:\\\tt holder \:will \:only\: gain\: interest\: on\: the\\\tt principal\:, and\: a\: borrower\: will\: never\: have\: to\\\tt pay\: interest\: on\: interest\: already\: accrued.

 {\mathbb{\colorbox {orange} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {lime} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {aqua} {@suraj5070}}}}}}}}}}}}}}}

Similar questions