Math, asked by yashu107, 1 year ago

√11-√7/√11+√7=a-b√77

Answers

Answered by Anonymous
64
I think it will help u
Attachments:

yashu107: thanks
Answered by mysticd
35

 Given \:\frac{( \sqrt{11} - \sqrt{7})}{( \sqrt{11} + \sqrt{7})} = a - b\sqrt{77}

 LHS = \frac{( \sqrt{11} - \sqrt{7})}{( \sqrt{11} + \sqrt{7})} \\

= \frac{( \sqrt{11} - \sqrt{7})(\sqrt{11} - \sqrt{7})}{( \sqrt{11} + \sqrt{7})(\sqrt{11} - \sqrt{7})}

= \frac{( \sqrt{11} - \sqrt{7})^{2}}{( \sqrt{11})^{2} - (\sqrt{7})^{2}} \\= \frac{ \sqrt{11}^{2} + \sqrt{7}^{2} - 2\times \sqrt{11} \times \sqrt{7} }{11 - 7} \\= \frac{11 + 7 - 2\sqrt{77} }{ 4 } \\= \frac{18- 2\sqrt{77} }{ 4 } \\= \frac{2(9- \sqrt{77}) }{ 4 } \\= \frac{9- \sqrt{77} }{ 2 } \\= \frac{9}{2} - \frac{1}{2}(\sqrt{77}) \: --(1)

 Now, \pink{Compare \:  \frac{9}{2} - \frac{1}{2}(\sqrt{77}) = a - b \sqrt{77}}

 a = \frac{9}{2} \: and \: b =  \frac{1}{2}

Therefore.,

 \green { a = \frac{9}{2} \: and \: b =  \frac{1}{2} }

•••♪

Similar questions