Math, asked by arceusgodsgamingyt, 6 months ago

11. A, B and C together finish a work in 4 days. If A alone can finish the same
8 days and B in 12 days, find how long will C take to finish the work.​

Answers

Answered by mddilshad11ab
167

\sf\large\underline\purple{Given:-}

\sf{\implies Work\: finish\:_{(A+B+C)}=4\:days}

\sf{\implies Work\: finish\:_{(A)}=8\:days}

\sf{\implies Work\: finish\:_{(B)}=12\:days}

\sf\large\underline\purple{To\: Find:-}

\sf{\implies Work\: finish\:_{(C)}=?\:days}

\sf\large\underline\purple{Solution:-}

  • To calculate the work done by C alone at first we have to assume work done by C alone be x then putting the value which given in the question:-]

\sf{\implies Let,\:\:A's\:one\:day\: work=\dfrac{1}{8}}

\sf{\implies Let,\:\:B's\:one\:day\: work=\dfrac{1}{12}}

\sf{\implies Let,\:\:C's\:one\:day\: work=\dfrac{1}{x}}

\tt{\implies Work\:done\:by\:_{(A+B+C)}=4\: days}

  • Here putting the value of A, B and C :-]

\tt{\implies \dfrac{1}{8}+\dfrac{1}{12}+\dfrac{1}{x}=\dfrac{1}{4}}

\tt{\implies \dfrac{1}{x}=\dfrac{1}{4}-\dfrac{1}{8}-\dfrac{1}{12}}

\tt{\implies \dfrac{1}{x}=\dfrac{12-6-4}{48}}

\tt{\implies \dfrac{1}{x}=\dfrac{2}{48}}

\tt{\implies \dfrac{1}{x}=\dfrac{1}{24}}

\tt{\implies x=24}

\sf\large{Hence,}

\bf{\implies Work\:done\:by\:_{(C\:alone)}=24\: days}

Similar questions