Math, asked by Nitinjais, 8 months ago


11. A cylindrical pillar 70 cm in diameter and 4 m high is to be cemented all around the curved
surface. Find the cost of cementing it at the rate of 5 32 per m2.

Answers

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
29

\displaystyle\large\underline{\sf\red{Given}}

✭ Diameter of a cylindrical pillar

✭ Height of the pillar is 4 m

✭ Cost of cementing is 32 per m²

\displaystyle\large\underline{\sf\blue{To \ Find}}

◈ The cost of cementing?

\displaystyle\large\underline{\sf\gray{Solution}}

Curved surface area of a cylinder is given by,

\displaystyle \underline{\boxed{\sf CSA_{Cylinder} = 2\pi rh}}

━━━━━━━━━

\underline{\bigstar\:\textsf{According to the given Question :}}

Given that the diameter of the cylinder is 70 cm, then it's radius will be,

\displaystyle\sf :\implies Radius = \dfrac{Diameter}{2}\\

\displaystyle\sf :\implies Radius = \dfrac{70}{2}\\

\displaystyle\sf :\implies\green{Radius = 35 \ cm}

Also on converting height to cm,

\displaystyle\sf :\implies 1 \ m = 100 \ cm\\

\displaystyle\sf :\implies 4 \ m = 4\times 100\\

\displaystyle\sf :\implies \green{Height = 400 \ cm}

So now the CSA of the cylinder will be,

\displaystyle\underline{\boxed{\sf CSA_{Cylinder} = 2\pi rh}}

  • R = Radius = 35 cm
  • H = Height = 400 cm

Substituting the values,

\displaystyle\sf\twoheadrightarrow CSA = 2\pi rh\\

\displaystyle\sf\twoheadrightarrow CSA = 2\times \dfrac{22}{7} \times 35\times 400\\

\displaystyle\sf\twoheadrightarrow CSA = 2\times 22\times 5\times 400\\

\displaystyle\sf\twoheadrightarrow CSA = 88000 \ cm^2\\

\displaystyle\sf\twoheadrightarrow CSA = \dfrac{88000}{100}\\

\displaystyle\sf\twoheadrightarrow\orange{CSA = 880 \ m^2}

Now the cost of cementing at ₹32 per m² is,

\displaystyle\dashrightarrow \underline{\boxed{\sf Cost = Area \times 32}}\\

\displaystyle\sf\dashrightarrow Cost = 880 \times 32\\

\displaystyle\sf\dashrightarrow\pink{Cost = Rs \ 28160}

━━━━━━━━━━━━━━━━━━

Answered by ItzDeadDeal
25

\blue{\bold{\underline{\underline{Answer:}}}} </p><p>

\green{\tt{\therefore{Radius\:of\:cylinder=5\:m}}}\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}} </p><p></p><p>

\begin{gathered}\green{\underline \bold{Given:}} \\ \tt: \implies Height \: of \: cylinder = 21 \: m \\ \\ \tt: \implies Cost \: of \: decorating \:c.s.a = 72930 \: rupees \\ \\ \tt: \implies Cost \: of \: decorating \: 1 \: {m}^{2} = 110.5 \: rupees \\ \\ \red{\underline \bold{To \: Find:}} \\ \tt: \implies Radius \: of \: cylinder = ?\end{gathered} </p><p></p><p>

• According to given question :

\begin{gathered}\bold{As \: we \: know \: that} \\ \tt: \implies C.S.A \: of \: cylinder = \frac{cost \: of \: decorating \: C.S.A}{ost \: of \: decorating \: 1 \: {m}^{2} } \\ \\ \tt: \implies C.S.A \: of \: cylinder = \frac{72930}{110.5} \\ \\ \tt: \implies C.S.A \: of \: cylinder = 660 \: {m}^{2} \\ \\ \bold{As \: we \: know \: that} \\ \tt: \implies C.S.A \: of \: cylinder = 2\pi rh \\ \\ \tt: \implies 660 = 2 \times \frac{22}{7} \times r \times 21 \\ \\ \tt: \implies 660 = 2 \times 22 \times 3 \times r \\ \\ \tt: \implies r = \frac{660}{44 \times 3} \\ \\ \green{\tt: \implies r = 5 \: m} \\ \\ \green{\tt \therefore Radius \: of \: cylinder \: is \: 5 \: m}\end{gathered} </p><p>

Similar questions