Math, asked by noharlilhare, 7 months ago

11. A number is 6 more than two times another number. The sum of the two
numbers is 24. Find the numbers.​

Answers

Answered by Aryan0123
1

Let the 2 numbers be x, y

 \huge{ \underline{ \sf{Given: }}} \\    \star \red{  \:  \sf{ \: x = 6 + 2y}} \\   \star \pink{ \sf{ \: x + y = 24}} \\  \\  \huge{ \underline{ \sf{to \: find:}}} \\  \green{ \sf{x   \: and \:  y}} \\ \\   \\  \huge{ \underline{ \sf{Method : }}} \\ \\    \blue{ \sf{ using \: Substitution \: method}}  \\  \\  \sf{ \purple{substitute \: Equation  \: 1\: in \: Equation \: 2}} \\  \implies \sf{(6 + 2y) + y = 24} \\ \implies \orange{ \sf{6 + 2y + y = 24}} \\  \implies \sf 6 + 3y = 24 \\  \implies \sf{3(2 + y) = 3(6)}  \\   \\ \sf{dividing \: by \: 3  \: on \: both \: sides } \\ ☞ \sf{2 +y = 6 } \\  \implies \sf{ y = 6 - 2 = 4} \\  \\  \therefore \boxed{ \bf{y = 4}} \\   \\  \sf{ \small{ now \: substitute \: value \: of \: y \: in \: (x = 6 + 2y)}} \\  \implies \sf{x = 6 + 2y} \\  \implies \sf{x = 6 + 2(4)} \\  \implies  \sf{x = 6 + 8} \\  \implies \sf{x = 14} \\  \\  \therefore \sf{ \boxed{ \bf{x = 14}}}

Similar questions