Math, asked by mayurkumar9535, 3 months ago

11)
c) Prove that (cosec - sin e) (sec -cos ) [tan e + cot e) = 1

Answers

Answered by samuka44244
1

hope this will be helpful

Attachments:
Answered by mathdude500
2

\large\underline{\bold{Given \:Question - }}

 \sf \: Prove  \: that \: (cosecx - sinx)(secx - cosx)(tanx + cotx) = 1

\large\underline{\sf{Solution-}}

Identities Used :-

1. \:  \:  \:  \boxed{ \bf{cosecx = \dfrac{1}{sinx} }}

2. \:  \:  \:  \boxed{ \bf{secx = \dfrac{1}{cosx} }}

3. \:  \:  \:  \boxed{ \bf{tanx \:  = \dfrac{sinx}{cosx} }}

4. \:  \:  \:  \boxed{ \bf{cotx = \dfrac{cosx}{sinx} }}

5. \:  \:  \:  \boxed{ \bf{ {sin}^{2} x +  {cos}^{2} x = 1}}

Now,

  • Consider,

\rm :\longmapsto\:(cosecx - sinx)(secx - cosx)(tanx + cotx)

 \: \sf \: =  \bigg(\dfrac{1}{sinx}  - sinx \bigg) \bigg( \dfrac{1}{cosx} - cosx \bigg) \bigg( \dfrac{sinx}{cosx}  + \dfrac{cosx}{sinx} \bigg)

 \sf \:  =  \: \bigg(\dfrac{1 -  {sin}^{2}x }{sinx}  \bigg) \bigg(\dfrac{1 -  {cos}^{2} x}{cosx}  \bigg) \bigg( \dfrac{ {sin}^{2}x +  {cos}^{2}x  }{sinx \: cosx} \bigg)

  =  \: \sf \: \dfrac{ {cos}^{2} x}{sinx}  \times \dfrac{ {sin}^{2}x }{cosx}  \times \dfrac{1}{sinx \: cosx}

 \sf \:  =  \: 1

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions