11. Find the values of
(a) 50 + 70
Answers
Answer:
We are given two equations:
\sf \bullet \dfrac{34}{3x+4y} +\dfrac{15}{3x-2y} =5∙
3x+4y
34
+
3x−2y
15
=5
\sf \bullet \dfrac{25}{3x-2y} -\dfrac{8.05}{3x+4y} =4.5∙
3x−2y
25
−
3x+4y
8.05
=4.5
First, assume:
3x – 2y = 1/a
3x + 4y = 1/b.
Then we get:
\sf \bullet 34b+15a =5∙34b+15a=5
\sf \bullet 25a -8.05b =4.5∙25a−8.05b=4.5
Now here:
a₁=15, b₁=34, c₁= -5
a₂=25, b₂= -8.05, c₂= -4.5
Then:
\sf \dfrac{a}{b_1 \times c_2-b_2 \times c_1} =\dfrac{b}{c_1 \times a_2-a_1 \times c_2} =\dfrac{-1}{a_1 \times b_2 - b_1 \times a_2}
b
1
×c
2
−b
2
×c
1
a
=
c
1
×a
2
−a
1
×c
2
b
=
a
1
×b
2
−b
1
×a
2
−1
Substitute.
\sf \dfrac{a}{(34 \times -4.5)-(-8.05 \times -5)} =\dfrac{b}{-5 \times 25-(15 \times -4.5)} =\dfrac{-1}{15 \times -8.05 - (34 \times 25)}
(34×−4.5)−(−8.05×−5)
a
=
−5×25−(15×−4.5)
b
=
15×−8.05−(34×25)
−1
Further solving, we get:
b=1/17
a=1/5
Now we assumed:
3x – 2y = 1/a
3x + 4y = 1/b
Substitute.
3x – 2y = 5
3x + 4y = 17.
Using elimination method, we finally get:
x=3 and y=2.
The value of x is 3 and y is 2.