Math, asked by shifanaazhifzanaaz, 1 month ago

11 i) Find the volume of a right circular cylinder whose curved surface area and
height are 110 cm³ and 5 cm respectively. Ans: 192.5 cm?​

Answers

Answered by ItzWhiteStorm
6

The volume of right circular cylinder is 192.5 cm³

Step-by-step explanation:

Given: The curved surface area of cylinder is 110 cm³ and the height of cylinder is 5 cm respectively.

To find: Volume of right circular cylinder

Required formula:

  • Volume of right circular cylinder = πr²h
  • Curved surface area of cylinder = 2πrh

Here,

  • CSA = curved surface area of cylinder
  • V = Volume of right circular cylinder
  • h = height
  • r = radius

Finding the radius of cylinder,

 \\   \implies \sf{CSA = 2\pi rh} \\  \\ \implies \sf{110 =2 \times  \frac{22}{7} \times r \times 5} \\  \\ \implies \sf{110 =  \frac{44}{7} \times r \times 5} \\  \\ \implies \sf{ 110 = \frac{220}{7}  \times r} \\  \\ \implies \sf{110 \times 7 = 220 \times r} \\  \\ \implies \sf{770 = 220r} \\  \\ \implies \sf{r =   \cancel{\frac{770}{220}} } \\  \\  \:  \: \:  \:  \:  \:  \:   \:  \bullet \: \:   \underline{ \boxed{\frak{r = 3.5}}} \:  \red{ \bigstar} \\  \\

  • Therefore,the radius of cylinder is 3.5 cm.

Now,finding the volume of right circular cylinder,

\\ \implies\sf{V = \pi r^2 h}\\ \\ \implies\sf{V = \frac{22}{7}\times (3.5)^2 \times 5}\\ \\ \implies\sf{V = \frac{22}{ \cancel{7}}\times  \cancel{3.5} \times 3.5 \times 5} \\  \\ \implies\sf{V = 22 \times 0.5 \times 3.5 \times 5} \\  \\ \implies\sf{V = 11 \times 17.5} \\  \\  \:  \:  \:  \:  \:  \: \bullet   \:  \:  \:  \underline{\boxed{\frak{V = 192.5 \:  {cm}^{3}}}} \:  \blue{ \bigstar} \\  \\

  • Hence,The volume of right circular cylinder is 192.5 cm³ .
Similar questions