(11). If a = 27, b = -10 and c = 40
show that a- (b-c) ≠ (a-b) -c .
Answers
Answered by
4
Step-by-step explanation:
Given:-
a = 27
b=-10
c= 40
To find:-
Show that a- (b-c) ≠ (a-b) -c
Solution:-
Given that
a = 27
b=-10
c= 40
LHS:-
a- (b-c)
=> 27 -( -10-40)
=> 27 - (-50)
=>27+50
=> 57
a- (b-c) = 57-------(1)
RHS:-
(a-b) -c
=> (27-(-10) ) -40
=> (27+10)-40
=> 37-40
=> -3
(a-b) -c = -3 --------(2)
From (1)&(2)
a- (b-c) ≠ (a-b) -c .
Hence, Proved.
Answer:-
a- (b-c) ≠ (a-b) -c .
Associative Property under subtraction does not holds in the integers.
Used formulae:-
- (+)quantity×(+) quantity= (+)quantity
- (- )quantity×(-)quantity = (+ )quantity
- (+ )quantity×( -) quantity= (-) quantity
- (- )quantity×(+ )quantity=( -)quantity
Answered by
4
Answer:
77≠ -3
Hence,not verified
Step-by-step explanation:
If a=27
b= -10
c= 40
Show
a-(-b-c) ≠ (a-b)-c
= 27-{(-10)-(40) ≠{27-(-10)}-40
= 27-(-50)≠ (27+10)-40
= 27+50≠37-40
= 77≠-3
= Hence, not verified.
Similar questions