11. If cosA= 3 5 and sinB= 5 13 then the value of tan(A+B)value=
Answers
Answer:
tan(A+B)=
Step-by-step explanation:
Given,
As we know,
Again,
tan(A+B)=
Given: cos A=3/5 and sin B=5/13
To find The value of tan(A+B)
Solution: We know that sin²A+cos²A=1
sin²B+cos²B=1
∴ sin²A=1-cos²A
⇒ sin A= √(1-cos²A)
⇒ sin A= √(1-(3/5)²)
= √(1-(9/25))
= √((25-9)/25)
=√16/25
= 4/5
Similarly, os²B=1-sin²B
⇒ cos B=√(1-sin²B)
⇒ cos B= √(1-(5/13)²)
= √(1-(25/169))
= √((169-25)/169)
= √144/169
= 12/13
We know that tan A=sin A/cos A
tan B=sin B/cos B
∴ tan A= (4/5)/(3/5) [substituting the value of sin A and cos A]
=(4×5)/(3×5)
=4/3
tan B= (5/13)/(12/13) [substituting the value of sin B and cos B]
= (5×13)/(12×13)
= 5/12
From the formula of tan(A+B), we have
tan(A+B)= tan A+tan B/(1-(tan A×tan B))
= {(4/3)+(5/12)}/(1-((4/3)×(5/12)))
={((4×4)+5)/12}/(1-(5/9)) [∵L.C.M of 3,12 is 12]
={(16+5)/12}/((9-5)/9)
=(21/12)/(4/9)
=(21×9)/(4×12)
=189/48
= 63/16
Hence the value of tan(A+B) is 63/16.