Math, asked by max66, 3 months ago

11. If roots of an equation 6x2 – 13x + m = 0 are reciprocal of each other, find the value of m. PLS EXPLAIN STEP BY STEP

Answers

Answered by mathdude500
14

\large\underline{\sf{Answer- }}

 \sf \: Let  \:  \alpha \: and \:   \beta  \: be \: the \: roots \: of \:  {6x}^{2}  - 13x + m = 0.

On comparing with ax² + bx + c = 0, we get

  • a = 6

  • b = - 13

  • c = m

According to given statement,

  • Roots are Reciprocal of each other.

So,

\bf\implies \: \beta  \:  =  \: \dfrac{1}{ \alpha }  -  -  - (1)

We know,

 \:  \:  \:  \:  \:  \:  \:  \: \boxed{{\tt Product\ of\ the\ roots=\frac{c}{a}}}

Or

 \:  \:  \:  \:  \:  \:  \: \boxed{{\sf Product\ of\ the\ roots=\frac{Constant}{coefficient\ of\ x^{2}}}}

Therefore,

\rm :\longmapsto\: \alpha  \times \dfrac{1}{ \alpha }   \: =  \: \dfrac{m}{6}

\rm :\longmapsto\:1 = \dfrac{m}{6}

\bf\implies \:m \:  =  \: 6

Short cut trick :-

If the roots of the quadratic equation ax² + bx + c = 0 are Reciprocal of each other, then coefficient of x² = constant term.

  • That is , a = c.

Additional Information :-

 \:  \:  \:  \:  \:  \:  \: \boxed{{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

OR

 \:  \:  \:  \:  \:  \:  \: \boxed{{\tt Sum\ of\ the\ zeroes=\frac{-b}{a}}}

Similar questions