Math, asked by Anonymous, 4 months ago

11. If the first term of an A.P. is a, the second term
b and the last term c, then show that the sum of
the terms of the A.P. is
(a + c) (b + c -- 2a)/2 (b-a)​

Answers

Answered by mathdude500
8

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{a_1 = a} \\ &\sf{a_2 = b}\\ &\sf{a_n = c} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  To \:  show - \begin{cases} &\sf{S_n = \dfrac{(a + c)(b + c - 2a)}{2(b - a)} }  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} (2\:a\:+\:(n\:-\:1)\:d)}}}}}} \\ \end{gathered}

or

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} (\:a\:+\:a_n)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

  • Sₙ is the sum of n terms.

\large\underline\purple{\bold{Solution :-  }}

Let d be the common difference of an AP.

 \tt :  \implies \: d \:  =  \: a_2 \:  -  \: a_1

 \tt :  \implies \boxed{ \pink{ \bf \:  \: d \:  =  \: b \:  -  \: a}}

Now,

It is given that,

 \tt :  \implies \: a_n \:  =  \: c

 \tt :  \implies \: a \:  +  \: (n - 1)d \:  = c

 \tt :  \implies \: (n \:  -  \: 1)d \:  = c \:  -  \: a

On substituting the value of d, we get

 \tt :  \implies \: (n \:  -  \: 1)(b - a) \:  = c \:  -  \: a

 \tt :  \implies \: n - 1 = \dfrac{c - a}{b - a}

 \tt :  \implies \: n \:  = \dfrac{c - a}{b - a}  + 1

 \tt :  \implies \: n \:  = \dfrac{c - a + b - a}{b - a}

 \tt :  \implies \boxed{ \pink{ \bf \: n = \dfrac{c + b - 2a}{b - a} }}

Now,

We know, that sum of n terms is given by

 \tt :  \implies \: S_n \:   = \dfrac{n}{2} (a_1 + a_n)

 \rm \: On \:  substituting \:  the  \: values \:  of \:  a_1,  \: n,  \: a_n,  \: we \:  get

 \tt :  \implies \: S_n \:  =  \: \dfrac{(b + c - 2a)}{2(b - a)} (a + c)

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

 

Similar questions