11.
If the roots of the equation X2 - 8x + 22 - 6a = 0
are real and distinct, then find all possible
values of a
Answers
Correct equation:-
- x² - 8x + (a² - 6a) = 0 .
Given:-
- The roots of the equation are real and distinct.
To find:-
- All possible values of a.
Solution:-
➤ For any quadratic equation having real roots , the discriminant must be greater than or equal to zero .
We know,
➤ [tex] \pink{b² - 4ac ≥ 0 }[/tex]
Now substituiting the given values :
=> (8)² - 4(1)(a² - 6a) ≥ 0
=> 64 - 4a² + 24a ≥ 0
=> 4a² - 24a - 64 ≤ 0
=> a² - 6a - 16 ≤ 0
=> (a + 2) (a - 8) ≤ 0
Hence the range:
➤ -2 ≤ a ≤ 8
___________________
Answer:-
➤
______________________________
Correct equation:-
x² - 8x + (a² - 6a) = 0
.
Given:-
The roots of the equation are real and distinct.
To find:-
All possible values of a.
Solution:-
➤ For any quadratic equation having real roots , the discriminant must be greater than or equal to zero
.
We know,
➤
Now substituiting the given values :
=> (8)² - 4(1)(a² - 6a) ≥ 0
=> 64 - 4a² + 24a ≥ 0
=> 4a² - 24a - 64 ≤ 0
=> a² - 6a - 16 ≤ 0
=> (a + 2) (a - 8) ≤ 0
Hence the range:
➤ -2 ≤ a ≤ 8
___________________
Answer:-
➤
______________________________